DOI QR코드

DOI QR Code

Analysis and modeling of hyperstatic RC beam bonded by composite plate symmetrically loaded and supported

  • Abderezak, Rabahi (Laboratory of Geomatics and sustainable development, University of Tiaret) ;
  • Daouadji, Tahar Hassaine (Laboratory of Geomatics and sustainable development, University of Tiaret) ;
  • Rabia, Benferhat (Laboratory of Geomatics and sustainable development, University of Tiaret)
  • 투고 : 2021.11.27
  • 심사 : 2022.11.08
  • 발행 : 2022.11.25

초록

The flexural strengthening of reinforced concrete beams by external bonding of composite materials has proved to be an efficient and practical technique. This paper presents a study on the flexural performance of reinforced concrete continuous beams with three spans (one span and two cantilevered) strengthened by bonding carbon fiber fabric (CFRP). The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened continuous beam, i.e., the continuous concrete beam, the FRP plate and the adhesive layer. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends. Remarkable effect of shear deformations of adherends has been noted in the results. The theoretical predictions are compared with other existing solutions that shows good agreement, and It shows the effectiveness of CFRP strips in enhancing shear capacity of continuous beam. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam.

키워드

과제정보

This research was supported by the Algerian Ministry of Higher Education and Scientific Research (MESRS) as part of the grant for the PRFU research project n° A01L02UN140120200002 and by the University of Tiaret, in Algeria.

참고문헌

  1. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021), "Modeling and analysis of the imperfect FGM-damaged RC hybrid beams", Adv. Comput. Des., 6(2), 117-133. http://dx.doi.org/10.12989/acd.2021.6.2.117.
  2. Abderezak, R., Rabia, B., Daouadji, T.H., Abbes, B., Belkacem, A. and Abbes, F. (2018), "Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams", Adv. Mater. Res., 7(2), 83. https://doi.org/10.12989/amr.2018.7.2.083.
  3. Aicha, K., Rabia, B., Daouadji, T.H. and Bouzidene, A. (2020), "Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions", Couple. Syst. Mech., 9(6), 575-597. http://dx.doi.org/10.12989/csm.2020.9.6.575.
  4. Antar, K., Amara, K., Benyoucef, S., Bouazza, M. and Ellali, M. (2019), "Hygrothermal effects on the behavior of reinforcedconcrete beams strengthened by bonded composite laminate plates", Struct. Eng. Mech., 69(3), 327-334. https://doi.org/10.12989/sem.2019.69.3.327.
  5. Ashour, A.F., El-Refaie, S.A. and Garrity, S.W. (2004), "Flexural strengthening of RC continuous beams using CFRP laminates", Cement Concrete Compos., 26(7), 765-775. https://doi:10.1016/j.cemconcomp.2003.07.002.
  6. Benachour, A., Benyoucef, S. and Tounsi, A. (2008), "Interfacial stress analysis of steel beams reinforced with bonded prestressed FRP plate", Eng. Struct., 30(11), 3305-3315. https://doi.org/10.1016/j.engstruct.2008.05.007.
  7. Benferhat, R., Daouadji, T.H. and Abderezak, R. (2021), "Effect of porosity on fundamental frequencies of FGM sandwich plates", 1, 3(1), 25. http://dx.doi.org/10.12989/cme.2021.3.1.025.
  8. Bensattalah, T., Hassaine Daouadji, T. and Zidour, M. (2019), "Influences the shape of the floor on the behavior of buildings under seismic effect", In International Symposium on Materials and Sustainable Development, Springer, Cham. https://doi.org/10.1007/978-3-030-43268-33.
  9. Chedad, A., Daouadji, T.H., Abderezak, R., Belkacem, A., Abbes, B., Rabia, B. and Abbes, F. (2017), "A high-order closed-form solution for interfacial stresses in externally sandwich FGM plated RC beams", Adv. Mater. Res., 6(4), 317. https://doi.org/10.12989/amr.2017.6.4.317.
  10. Chen, Z., Zhou, J., Liang, Y. and Ye, P. (2020), "Residual behavior of recycled aggregate concrete beam and column after elevated temperatures", Struct. Eng. Mech., 76(4), 513-528. https://doi.org/10.12989/sem.2020.76.4.513.
  11. Dar, M.A., Subramanian, N., Pande, S., Dar, A.R. and Raju, J. (2020), "Performance evaluation of different strengthening measures for exterior RC beam-column joints under opening moments", Struct. Eng. Mech., 74(2), 243-254. https://doi.org/10.12989/sem.2020.74.2.243.
  12. De Domenico, D. and Ricciardi, G. (2020), "A stress field approach for the shear capacity of RC beams with stirrups", Struct. Eng. Mech., 73(5), 515-527. https://doi.org/10.12989/sem.2020.73.5.515.
  13. Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Nonlocal nonlinear dynamic behavior of composite piezo-magnetic beams using a refined higher-order beam theory", Steel Compos. Struct., 35(4), 545-554. https://doi.org/10.12989/scs.2020.35.4.545.
  14. Guenaneche, B. and Tounsi, A. (2014), "Effect of shear deformation on interfacial stress analysis in plated beams under arbitrary loading", Int. J. Adhesion Adhesives, 48, 1-13. https://doi.org/10.1016/j.ijadhadh.2013.09.016.
  15. Guenaneche, B. and Tounsi, A. (2014), "Effect of shear deformation on interfacial stress analysis in plated beams under arbitrary loading", Int. J. Adhesion Adhesives, 48, 1-13. https://doi.org/10.1080/01694243.2016.1140703.
  16. Hadj, B., Rabia, B. and Daouadji, T.H. (2021), "Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity", Coup. Syst. Mech., 10(1), 61-77. http://dx.doi.org/10.12989/csm.2021.10.1.061.
  17. Hassaine Daouadji, T. (2017) "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
  18. He, X.J., Zhou, C.Y. and Wang, Y. (2020), "Interfacial stresses in reinforced concrete cantilever members strengthened with fibrereinforced polymer laminates", Adv. Struct. Eng., 23(2), 277- 288. https://doi.org/10.1177/1369433219868933.
  19. Henni, M.A.B., Abbes, B., Daouadji, T.H., Abbes, F. and Adim, B. (2021), "Numerical modeling of hygrothermal effect on the dynamic behavior of hybrid composite plates", Steel Compos. Struct., 39(6), 751-763. http://dx.doi.org/10.12989/scs.2021.39.6.751.
  20. Liu, S., Zhou, Y., Zheng, Q., Zhou, J., Jin, F. and Fan, H. (2019), "Blast responses of concrete beams reinforced with steel-GFRP composite bars", Structures, 22, 200-212. https://doi.org/10.1016/j.istruc.2019.08.010.
  21. Loor, A.S., Bidgoli, M.R. and Mazaheri, H. (2022), "On the use of differential quadrature-three-term conjugate finite-step length methods for reliability analysis of steel fiber-reinforced sinusoidal rupture beams", Eng. Comput., 38, 2067-2078. https://doi.org/10.1007/s00366-020-01201-w
  22. "Seismic performance of the concrete-encased CFST column to RC beam joints: Analytical study", Steel Compos. Struct., 36(5), 533-551. https://doi.org/10.12989/scs.2020.36.5.533.
  23. Naser, M.Z. and Seitllari, A. (2020), "Concrete under fire: an assessment through intelligent pattern recognition", Eng. Comput., 36, 1915-1928. https://doi.org/10.1007/s00366-019-00805-1.
  24. Ortiz-Navas, F., Navarro-Gregori, J., Leiva, G. and Serna, P. (2020), "Comparison of macrosynthetic and steel FRC shearcritical beams with similar residual flexure tensile strengths", Struct. Eng. Mech., 76(4), 491-503. https://doi.org/10.12989/sem.2020.76.4.491.
  25. Panjehpour, M., Farzadnia, N., Demirboga, R. and Ali, A.A.A. (2016), "Behavior of high-strength concrete cylinders repaired with CFRP sheets", J. Civil Eng. Manage, 22(1), 56-64. https://doi.org/10.3846/13923730.2014.897965.
  26. Pello L., Leire G., Ignacio P. and Jose-Tomas S.J. (2020), "Flexural strengthening of low-grade reinforced concrete beams with compatible composite material: Steel Reinforced Grout (SRG)", Construct. Build. Mater., 235, article 117790. https://doi.org/10.1016/j.conbuildmat.2019.117790.
  27. Rabahi A., Hassaine Daouadji T., Benferhat R. and Tounsi, A. (2021d), "New proposal for flexural strengthening of a continuous I-steel beam using FRP laminate under thermomechanical loading", Struct. Eng. Mech., 78(6), 703-714. http://dx.doi.org/10.12989/sem.2021.78.6.703.
  28. Rabahi A., Hassaine Daouadji, T. and Benferhat, R. (2021b), "Aluminum beam reinforced by externally bonded composite materials", Adv. Mater. Res., 10(1), 23-44. http://dx.doi.org/10.12989/amr.2021.10.1.023.
  29. Rabahi A., Hassaine Daouadji, T. and Benferhat, R. (2021f), "New solution for damaged porous RC cantilever beamsstrengthening by composite plate", Adv. Mater. Res., 10(3), 169-194. http://dx.doi.org/10.12989/amr.2021.10.3.169.
  30. Rabahi A., Hassaine Daouadji, T., Benferhat, R. and Tounsi, A. (2021c), "Mechanical behavior of RC cantilever beams strengthened with FRP laminate plate", Adv. Comput. Des., 6(3),169-190. http://dx.doi.org/10.12989/acd.2021.6.3.169.
  31. Rabahi Abderezak, Hassaine Daouadji, T. and Benferhat, R. (2020), "Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate", Coup. Syst. Mech., 9(5), 473-498. http://dx.doi.org/10.12989/csm.2020.9.5.473.
  32. Rabahi, A., Hassaine Daouadji, T. and Benferhat, R. (2021e), "Fiber reinforced polymer in civil engineering: Shear lag effect on damaged RC cantilever beams bonded by prestressed plate", Couple. Syst. Mech., 10(4), 299-316. http://dx.doi.org/10.12989/csm.2021.10.4.299.
  33. Rabia B., Hassaine Daouadji, T. and Rabahi, A. (2020), "Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis", Adv. Mater. Res., 9(4), 265-287. http://dx.doi.org/10.12989/amr.2020.9.4.265.
  34. Rabia, B., Daouadji, T.H. and Abderezak, R. (2021), "Analysis and sizing of RC beams reinforced by external bonding of imperfect functionally graded plate", Adv. Mater. Res., 10, 77-98. http://dx.doi.org/10.12989/amr.2021.10.2.077.
  35. Rabia, B., Daouadji, T.H. and Abderezak, R. (2021), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", 1, 3(1), 41. http://dx.doi.org/10.12989/cme.2021.3.1.041.
  36. Rabia, B., Tahar, H.D. and Abderezak, R. (2020), "Thermomechanical behavior of porous FG plate resting on the WinklerPasternak foundation", Coup. Syst. Mech., 9(6), 499-519. http://dx.doi.org/10.12989/csm.2020.9.6.499.
  37. Ricardo, C. and Paulo, P. (2020), "Main factors determining the shear behavior of interior RC beam-column joints", Struct. Eng. Mech., 76(3), 337-354. https://doi.org/10.12989/sem.2020.76.3.337.
  38. Shariati, M., Mafipour, M.S., Haido, J.H., Yousif, S.T., Toghroli, A., Trung, N.T. and Shariati, A. (2020), "Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS)", Steel Compos. Struct, 34(1), 155. https://doi.org/10.12989/scs.2020.34.1.155.
  39. Smith, S.T. and Teng, J.G. (2002), "Interfacial stresses in plated beams", Eng. Struct., 23(7), 857-871. http://dx.doi.org/10.1016/S0141-0296(00)00090-0.
  40. Tahar, H.D., Abderezak, R. and Rabia, B. (2020), "Flexural performance of wooden beams strengthened by composite plate", Struct. Monit. Mainten, 7(3), 233-259. http://dx.doi.org/10.12989/smm.2020.7.3.233.
  41. Tahar, H.D., Abderezak, R. and Rabia, B. (2021), "A new model for adhesive shear stress in damaged RC cantilever beam strengthened by composite plate taking into account the effect of creep and shrinkage", Struct. Eng. Mech., 79(5), 531-540. http://dx.doi.org/10.12989/sem.2021.79.5.531.
  42. Tahar, H.D., Abderezak, R. and Rabia, B. (2021), "Hyperstatic steel structure strengthened with prestressed carbon/glass hybrid laminated plate", Coupl. Syst. Mech., 10(5), 393-414. https://doi.org/10.12989/csm.2021.10.5.393.
  43. Tahar, H.D., Abderezak, R., Rabia, B. and Tounsi, A. (2021), "Impact of thermal effects in FRP-RC hybrid cantilever beams", Struct. Eng. Mech., 78(5), 573-583. http://dx.doi.org/10.12989/sem.2021.78.5.573.
  44. Tahar, H.D., Abderezak, R., Rabia, B. and Tounsi, A. (2021), "Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses", Coup. Syst. Mech., 10(2), 161-184. http://dx.doi.org/10.12989/csm.2021.10.2.161.
  45. Tahar, H.D., Boussad, A., Abderezak, R., Rabia, B., Fazilay, A. and Belkacem, A. (2019), "Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study", Struct. Eng. Mech., 72(4), 409-420. https://doi.org/10.12989/sem.2019.72.4.409.
  46. Tahar, H.D., Tayeb, B., Abderezak, R. and Tounsi, A. (2021), "New approach of composite wooden beam-reinforced concrete slab strengthened by external bonding of prestressed composite plate: Analysis and modeling", Struct. Eng. Mech., 78(3), 319-332. http://dx.doi.org/10.12989/sem.2021.78.3.31.
  47. Tayeb, B., Daouadji, T.H., Abderezak, R. and Tounsi, A. (2021), "Structural bonding for civil engineering structures: New model of composite I-steel-concrete beam strengthened with CFRP plate", Steel Compos. Struct., 41(3), 417-435. https://doi.org/10.12989/scs.2021.41.3.417.
  48. Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.
  49. Tlidji, Y., Benferhat, R. and Tahar, H.D. (2021), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., 77(2), 217-229. http://dx.doi.org/10.12989/sem.2021.77.2.217.
  50. Tlidji, Y., Benferhat, R., Trinh, L.C., Tahar, H.D. and Abdelouahed, T. (2021), "New state-space approach to dynamic analysis of porous FG beam under different boundary conditions", Adv. Nano Res., 11(4), 347-359. https://doi.org/10.12989/.2021.11.4.347.
  51. Tormen, A.F., Pravia, Z.M.C., Ramires, F.B. and Kripka, M. (2020), "Optimization of steel-concrete composite beams considering cost and environmental impact", Steel Compos. Struct., 34(3), 409-421. https://doi.org/10.12989/scs.2020.34.3.409.
  52. Tounsi, A. (2006), "Improved theoretical solution for interfacial stresses in concrete beams strengthened with FRP plate", Int. J. Solids Struct., 43(14-15), 4154-4174. https://doi.org/10.1016/j.ijsolstr.2005.03.074.
  53. Tounsi, A., Daouadji, T.H. and Benyoucef, S. (2009), "Interfacial stresses in FRP-plated RC beams: Effect of adherend shear deformations", Int. J. Adhesion Adhesives, 29(4), 343-351. https://doi.org/10.1016/j.ijadhadh.2008.06.008.
  54. Wang, Y.H., Yu, J., Liu, J.P., Zhou, B.X. and Chen, Y.F. (2020), "Experimental study on assembled monolithic steel-prestressed concrete composite beam in negative moment", J. Construct. Steel Res., 167, 105667. https://doi.org/10.1016/j.jcsr.2019.06.004.
  55. Yang, Y. (2020), "Experimental study on shear behaviors of Partial Precast Steel Reinforced Concrete beams", Steel Compos. Struct., 37(5), 605-620. https://doi.org/10.12989/scs.2020.37.5.605.
  56. Yehia, A. and Zaher, A. (2018), "Flexural behavior of FRP strengthened concrete-wood composite beams", Ain Shams Eng. J., 9(4), 3419-3424. https://doi.org/10.1016/j.asej.2018.06.003.
  57. Yu, Y., Yang, Y., Xue, Y. and Liu, Y. (2020), "Shear behavior and shear capacity prediction of precast concrete-encased steel beams", Steel Compos. Struct., 36(3), 261-272. https://doi.org/10.12989/scs.2020.36.3.261.
  58. Yuan, C., Chen, W., Pham, T.M. and Hao, H. (2019), "Effect of aggregate size on bond behaviour between basalt fibre reinforced polymer sheets and concrete", Compos. Part B: Eng., 158, 459-474. https://doi.org/10.1016/j.compositesb.2018.09.089.
  59. Zhang, G., Ali, Z.H., Aldlemy, M.S., Mussa, M.H., Salih, S.Q., Hameed, M.M. and Yaseen, Z.M. (2020), "Reinforced concrete deep beam shear strength capacity modelling using an integrative bio-inspired algorithm with an artificial intelligence model", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-01137-1.
  60. Zhang, J., Sun, Y., Li, G., Wang, Y., Sun, J. and Li, J. (2020), "Machine-learning-assisted shear strength prediction of reinforced concrete beams with and without stirrups", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-020-01076-x.
  61. Zohra, A., Benferhat, R., Tahar, H.D. and Tounsi, A. (2021), "Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations", Struct. Eng. Mech., 77(6), 797-807. http://dx.doi.org/10.12989/sem.2021.77.6.797.