DOI QR코드

DOI QR Code

Frequency response of elastic nanocomposite beams containing nanoparticles based on sinusoidal shear deformation beam theory

  • Hou, Suxia (Shaanxi Engineering Research Center of Controllable Neutron Source, School of Electronic Information, Xijing University) ;
  • Wu, Shengbin (Center of Modern Educational Technology, Guizhou University of Finance and Economics) ;
  • Luo, Jijun (Shaanxi Engineering Research Center of Controllable Neutron Source, School of Electronic Information, Xijing University) ;
  • Nasihatgozar, Mohsen (Department of Mechanical Engineering, Kashan Branch, Islamic Azad University) ;
  • Behshad, Amir (Faculty of Technology and Mining, Yasouj University)
  • Received : 2021.03.08
  • Accepted : 2022.11.07
  • Published : 2022.11.25

Abstract

Improving the mechanical properties of concrete in the construction industry in order to increase resistance to dynamic and static loads is one of the essential topics for researchers. In this work, vibration analysis of elastic nanocomposite beams reinforced by nanoparticles based on mathematical model is presented. For modelling of the strucuture, sinusoidal shear deformation beam theory (SSDBT) is utilized. Mori-anak model model is utilized for obtaining the effective properties of the strucuture including agglomeration influences. Utilizing the energy method and Hamilton's principal, the motion equations are calculated. The frequency of the elastic nanocomposite beam is obtanied by analytical method. The aim of this work is investigating the effects of nanoparticles volume percent and agglomeration, length and thickness of the beam on the frequency of the structure. The results show that the with enhancing the nanoparticles volume percent, the frequency is increased. In addition, the water absorption of the concrete is presented in this article.

Keywords

References

  1. ASTM C150 (2001), Standard Specification for Portland Cement, Annual Book of ASTM Standards, ASTM, Philadelphia.
  2. ASTM C293 (2001), Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading), ASTM, Philadelphia, PA.
  3. Akarsh, P.K., Marathe, S.H. and Kumar Bhat, A. (2020), "Influence of graphene oxide on properties of concrete in the presence of silica fumes and M-sand", Construct. Build. Mat., 268,121093. https://doi.org/10.1016/j.conbuildmat.2020.121093.
  4. Akarsh, P.K., Shrinidhi, D., Marathe, S.H. and Kumar Bhat, A. (2022), "Graphene oxide as nano-material in developing sustainable concrete - A brief review", Mat. Today: Proceed., 60,234-246. https://doi.org/10.1016/j.matpr.2021.12.510.
  5. Al-Furjan, M.S.H., Xu, M.X., Farrokhian, A., Jafari, G.S., Shen, X. and Kolahchi, R. (2022a), "On wave propagation in piezoelectric-auxetic honeycomb-2D-FGM micro-sandwich beams based on modified couple stress and refined zigzag theories", Wave Rand. Complex. Media.
  6. Al-Furjan, M.S.H., Yang, Y., Farrokhian, G.S., Shen, X., Kolahchi, R. and Rajak, D.K. (2022b), "Dynamic instability of nanocomposite piezoelectric-leptadenia pyrotechnica rheological elastomer-porous functionally graded materials micro viscoelastic beams at various strain gradient higher-order theories", Polym. Compos., 43, 282-298. https://doi.org/10.1002/pc.26373.
  7. Al-Furjan, M.S.H., Yin, C., Shen, X., Kolahchi, R., Zarei, M.S. and Hajmohammad, M.H. (2022c), "Energy absorption and vibration of smart auxetic FG porous curved conical panels resting on the frictional viscoelastic torsional substrate", Mech. Syst. Signal Proces., 178, 109269. https://doi.org/10.1016/j.ymssp.2022.109269.
  8. Al-Furjan, M.S.H., Shan, L., Shen, X., Zarei, M.S., Hajmohammad, M.H. and Kolahchi, R. (2022d), "A Review on Fabrication Techniques and Tensile Properties of Glass, Carbon, and Kevlar Fiber Reinforced Polymer Composites", J. Mat. Res. Tech., 19, 2930-2959. https://doi.org/10.1016/j.jmrt.2022.06.008.
  9. Al-Furjan, M.S.H., Shan, L., Shen, X., Kolahchi, R. and Rajak, D.K. (2022e), "Combination of FEM-DQM for nonlinear mechanics of porous GPL-reinforced sandwich nanoplates based on various theories", Thin-Wall. Struct., 178, 109495. https://doi.org/10.1016/j.tws.2022.109495.
  10. Al-Furjan, M.S.H., Kong, X.S., Shan, L., Soleimani Jafari, G., Farrokhian, A., Kolahchi, R. and Rajak, D.K. (2022f), "Influence of LPRE on the size-dependent phase velocity of sandwich beam including FG porous and smart nanocomposite layers", Polym. Compos., https://doi.org/10.1002/pc.26820.
  11. Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R., Kolahchi, R. (2021a), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", ThinWall. Struct. 163, 107706.https://doi.org/10.1016/j.tws.2021.107706.
  12. Al-Furjan, M.S.H., Hajmohammad, M.H., Shen, X., Rajak, D.K. and Kolahchi, R. (2021b), "Evaluation of tensile strength and elastic modulus of 7075-T6 aluminum alloy by adding SiC reinforcing particles using vortex casting method", J. Alloys. Compund., 886, 161261. https://doi.org/10.1016/j.jallcom.2021.161261.
  13. Al-Furjan, M., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2021c), "Dynamic stability control of viscoelastic nanocomposite piezoelectric sandwich beams resting on Kerr foundation based on exponential piezoelasticity theory", Europ. J. Mech-A/Solids, 86, 104169. https://doi.org/10.1016/j.euromechsol.2020.104169.
  14. Al-Furjan, M., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2020), "Higher order nonlocal viscoelastic strain gradient theory for dynamic buckling analysis of carbon nanocones", Aerosp Sci Technol. 107, 106259. https://doi.org/10.1016/j.ast.2020.106259.
  15. Amoli, A., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory", Earthq. Struct., 15(3), 285-294. https://doi.org/10.12989/eas.2018.15.3.285.
  16. Arbabi, A., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Concrete columns reinforced with Zinc Oxide nanoparticles subjected to electric field: buckling analysis", Wind Sstruct., 24(5), 431-446. https://doi.org/10.12989/was.2017.24.5.431.
  17. Azmi, M., Kolahchi, R. and Rabani Bidgoli, M. (2019), "Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load", Adv. Concrete Construct., 7(1), 51-63. https://doi.org/10.12989/acc.2019.7.1.051.
  18. Bakhshande Amnieh. H., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater. 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140.
  19. Faramoushjan, S.G., Jalalifar, H. and Kolahchi, R. (2021), "Mathematical modelling and numerical study for buckling study in concrete beams containing carbon nanotubes", Adv. Concrete Construct., 11(6), 521-529. https://doi.org/10.12989/acc.2021.11.6.521.
  20. Farokhian, A. and Kolahchi, R. (2020), "Frequency and instability responses in nanocomposite plate assuming different distribution of CNTs", Struct. Eng. Mech., 73(5), 555-563. https://doi.org/10.12989/sem.2020.73.5.555.
  21. Fakhar, A. and Kolahchi, R. (2018), "Dynamic buckling of magnetorheological fluid integrated by visco-piezo-GPL reinforced plates", Int. J. Mech. Sci., 144, 788-799. https://doi.org/10.1016/j.ijmecsci.2018.06.036.
  22. Golabchi, H., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, 21, 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
  23. Hajmohammad, M.H., Sharif Zarei, M., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally gradedcarbon nanotube-reinforced laminated plates/actuator based on sinusoidal-visco-piezoelasticity theories", J. Sandw. Struct. Mater., https://doi.org/10.1177/1099636217720373.
  24. Hajmohammad, M.H., Azizkhani, M.B. and Kolahchi, R. (2018a), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", Int. J. Mech. Sci., 137, 205-213 . https://doi.org/10.1016/j.ijmecsci.2018.01.026 .
  25. Hajmohammad, M.H., Zarei, M.S., Farrokhian, A. and Kolahchi, R. (2018b), "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Advan. Nano Res., 6(4), 299-321. https://doi.org/10.12989/anr.2018.6.4.299.
  26. Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018c), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002.
  27. Hajmohammad, M.H., Nouri, A.H., Zarei, M.S. and Kolahchi, R. (2019a), "A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal", Eng. Comput., 35(4), 1141-1157. https://doi.org/10.1007/s00366-018-0655-x.
  28. Hajmohammad, M.H., Zarei, M.S., Kolahchi, R. and Karami, H. (2019b), "Visco-piezoelasticity-zigzag theories for blast response of porous beams covered by graphene plateletreinforced piezoelectric layers", J. Sandw. Struct. Mat., https://doi.org/10.1177/1099636219839175.
  29. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2021), "Dynamic analysis in beam element of wave-piercing Catamarans undergoing slamming load based on mathematical modelling", Ocean Eng., 234, 109269. https://doi.org/10.1016/j.oceaneng.2021.109269.
  30. Heidarzadeh, A., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Concrete Pipes Reinforced with AL2O3 Nanoparticles Considering Agglomeration: Magneto-Thermo-Mechanical Stress Analysis", Int. J. Civ. Eng., 16(3), 315-322. https://doi.org/10.1007/s40999-016-0130-2.
  31. Henkhaus, K., Pujol, S. and Ramirez, J. (2013), "Axial failure of reinforced concrete beams damaged by shear reversals", J. Struct. Eng., 73, 1172-1180. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000673.
  32. Intarabut, D., Sukontasukkul, P., Phoo-ngernkham, T., Zhang, H., Yoo, D.Y., Limkatanyu, S. and Chindaprasirt, P. (2022), "Influence of graphene oxide nanoparticles on bond-slip reponses between fiber and geopolymer mortar", Nanomat., 12, 943-955. https://doi.org/10.3390/nano12060943.
  33. Jamnam, S., Maho, B., Techaphatthanakon, A., Ruttanapun,, C., Aemlaor, P., Zhang, H. and Sukontasukkul, P. (2022), "Effect of graphene oxide nanoparticles on blast load resistance of steel fiber reinforced concrete", Construct. Build. Mat., 343, 128139. https://doi.org/10.1016/j.conbuildmat.2022.128139.
  34. Jafarian Arani, A. and Kolahchi, R. (2016), "Buckling analysis of embedded laminated porous concrete beams armed with carbon nanotubes", Comput. Concr., 17, 567-578. https://doi.org/10.12989/cac.2016.17.5.567
  35. Jassas, M.R., Rabani Bidgoli, M. and Kolahchi, R. (2019), "Forced vibration analysis of concrete plates reinforced by agglomerated SiO2 nanoparticles based on numerical methods", Constr. Build. Mater., 211, 796-806. https://doi.org/10.1016/j.conbuildmat.2019.03.263.
  36. Jamali, M., Shojaee, T., Kolahch,i R. and Mohammadi, B. (2016), "Buckling analysis of nanocomposite cut out plate using domain decomposition method and orthogonal polynomials", Steel Compos. Struct., 22 (3), 691-712. https://doi.org/10.12989/scs.2016.22.3.691.
  37. Jamali, M., Shojaee, T., Mohammadi, B. and Kolahchi, R. (2019), "Cut out effect on nonlinear post-buckling behavior of FGCNTRC micro plate subjected to magnetic field via FSDT", Adv. Nano Res., 7(6), 405-417. https://doi.org/10.12989/anr.2019.7.6.405.
  38. Javani, R., Rabani Bidgoli, M. and Kolahchi, R. (2019), "Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories", Steel Compos. Struct., 31(4), 419-426. https://doi.org/10.12989/scs.2019.31.4.419.
  39. Jafari Natanzi, A., Soleimani Jafari, G. and Kolahchi, R. (2018), "Vibration and instability of nanocomposite pipes conveying fluid mixed by nanoparticles resting on viscoelastic foundation", Comput. Concrete, 21(5), 569-582. https://doi.org/10.12989/cac.2018.21.5.569.
  40. Keshtegar, B. and Kolahchi, R. (2018), "Reliability analysis-based conjugate map of beams reinforced by ZnO nanoparticles using sinusoidal shear deformation theory", Steel Compos. Struct., 28(2), 195-220. https://doi.org/10.12989/scs.2018.28.2.195.
  41. Keshtegar, B., Motezaker, M., Kolahchi, R. and Trung, N.T. (2020a), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin-Wall. Struct., 154, 106820. https://doi.org/10.1016/j.tws.2020.106820
  42. Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020b), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech. A/Solids. 82, 104010. https://doi.org/10.1016/j.euromechsol.2020.104010
  43. Keshtegar, B., Tabatabaei, J., Kolahchi, R. and Trung, N.T. (2020c), "Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load", Adv. Concrete Construct., 9(3), 327-335. https://doi.org/10.12989/acc.2020.9.3.327.
  44. Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. ttps://doi.org/10.1016/j.compstruct.2016.05.023.
  45. Kolahchi, R. (2017a), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016.
  46. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A.H. (2017b), "Wave propagation of embedded viscoelastic FGCNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci. 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.
  47. Kolahchi, R., Hosseini, H., Fakhar, M.H., Taherifar, R. and Mahmoudi, M. (2018), "A numerical method for magnetohygro-thermal postbuckling analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Comput. Mathemat. Applicat., 78(6), 2018-2034. https://doi.org/10.1016/j.camwa.2019.03.042.
  48. Kolahchi, R., Zhu, S.P., Keshtegar, B. and Trung, N.T. (2020a). "Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite martial", Aerosp. Sci. Technol., 98, 105656, https://doi.org/10.1016/j.ast.2019.105656.
  49. Kolahchi, R., Arbabi, A. and Rabani Bidgoli, M. (2020b), "Experimental study for ZnO nanofibers effect on the smart and mechanical properties of concrete", Smart Struct. Syst., 25(1), 97-104. https://doi.org/10.12989/sss.2020.25.1.097.
  50. Kolahchi, R. and Kolahdouzan, F. (2021), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Math. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.
  51. Kolahchi, R., Keshtegar, B. and Trung, N.T. (2022), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", Int. J. Sandw. Struct., 24, 643-662. https://doi.org/10.1177/10996362211020388
  52. Kolahdouzan, F., Mosayyebi, M., Ghasemi, F.A., Kolahchi, R. and Mousavi Panah, S.M. (2020), "Free vibration and buckling analysis of elastically restrained FG-CNTRC sandwich annular nanoplates", Adv. Nano Res., 9(4), 237-250. https://doi.org/10.12989/anr.2020.9.4.237.
  53. Motezaker, M. and Kolahchi, R. (2017a), "Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concrete, 19(6), 745-753. https://doi.org/10.12989/cac.2017.19.6.745.
  54. Motezaker, M. and Kolahchi, R. (2017a), "Seismic response of concrete columns with nanofiber reinforced polymer layer", Comput. Concrete, 20(3), 361-368. https://doi.org/10.12989/cac.2017.20.3.361.
  55. Motezaker, M., Kolahchi, R., Kumar Rajak, D. and Mahmoud, S. R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos. https://doi.org/10.1002/pc.26118.
  56. Mosharrafian, F. and Kolahchi, R. (2016), "Nanotechnology, smartness and orthotropic nonhomogeneous elastic medium effects on buckling of piezoelectric pipes", Struct. Eng. Mech., 58(5), 931-947. https://doi.org/10.12989/sem.2016.58.5.931.
  57. Naseri Taheri, M., Sabet, S.A. and Kolahchi, R. (2020), "Experimental investigation of self-healing concrete after crack using nano-capsules including polymeric shell and nanoparticles core", Smart Struct. Syst., 25(3), 337-343. https://doi.org/10.12989/sss.2020.25.3.337.
  58. Seo, Y.S., Jeong, W.B.,Yoo, W.S. and Jeong, H.K. (2015), "Frequency response analysis of cylindrical shells conveying fluid using finite element method", J. Mech. Sci. Tech., 19, 625-633. https://doi.org/10.1007/BF02916184.
  59. Tan, P. and Tong, L. (2001), "Micro-electromechanics models for piezoelectric-fiber-reinforced composite materials", Compos. Sci. Tech., 61, 759-769, https://doi.org/10.1016/S0266-3538(01)00014-8.
  60. Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009.
  61. Taherifar, R., Zareei, S.A., Rabani Bidgoli, M. and Kolahchi, R. (2020), "Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory", Steel Compos. Struct. 37(1), 99-115. https://doi.org/10.12989/scs.2020.37.1.099.
  62. Taherifar, R., Zareei, S.A., Rabani Bidgoli, M. and Kolahchi, R. (2021), "Application of differential quadrature and Newmark methods for dynamic response in pad concrete foundation covered by piezoelectric layer", J. Computat. Appl. Math., 382, 113075. https://doi.org/10.1016/j.cam.2020.113075.
  63. Yang, Y. and Li, H. (2020), "Experimental study on shear behaviors of Partial Precast Steel Reinforced Concrete beams", Steel Compos. Struct., 37(5), 605-620. http://dx.doi.org/10.12989/scs.2020.37.5.605.
  64. Yaylaci, U., Yaylaci, E., Olmez, M. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25, 551-563. https://doi.org/10.12989/cac.2020.25.6.551.
  65. Yaylaci, M. and Mehmet, A. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26, 107-114. https://doi.org/10.12989/cac.2020.26.2.000.
  66. Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., Oner, E. and Birinci, A., (2021), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mat., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.
  67. Zamanian, M., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nanoparticles", Wind. Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043.
  68. Zamani, A., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.
  69. Zarei, M.S., Azizkhani, M.B., Hajmohammad, M.H. and Kolahchi, R. (2017), "Dynamic buckling of polymer-carbon nanotube-fiber multiphase nanocomposite viscoelastic laminated conical shells in hygrothermal environments", J. Sandw. Struct. Mat., https://doi.org/10.1177/1099636217743288.
  70. Zheng, W., Chen, W.G., Feng, T., Li, W.Q., Liu, X.T., Dong, L.L. and Fu, Y.Q. (2019), "Enhancing chloride ion penetration resistance into concrete by using graphene oxide reinforced waterborne epoxy coating", Prog. Organic Coat., 138, 105389. https://doi.org/10.1016/j.porgcoat.2019.105389.