DOI QR코드

DOI QR Code

Enhance photoelectric efficiency of PV by optical-thermal management of nanofilm reflector

  • Liang, Huaxu (School of Energy Science and Engineering, Harbin Institute of Technology) ;
  • Wang, Baisheng (School of New Energy, Harbin Institute of Technology at Weihai) ;
  • Su, Ronghua (Institute of Defense Engineering, Academy of Military Science, PLA) ;
  • Zhang, Ao (Institute of Defense Engineering, Academy of Military Science, PLA) ;
  • Wang, Fuqiang (School of Energy Science and Engineering, Harbin Institute of Technology) ;
  • Shuai, Yong (School of Energy Science and Engineering, Harbin Institute of Technology)
  • Received : 2021.11.21
  • Accepted : 2022.07.13
  • Published : 2022.11.25

Abstract

Crystalline silicon photovoltaic cells have advantages of zero pollution, large scale and high reliability. A major challenge is that sunlight wavelength with photon energy lower than semiconductor band gap is converted into heat and increase its temperature and reduce its conversion efficiency. Traditional cooling PV method is using water flowing below the modules to cool down PV temperature. In this paper, the idea is proposed to reduce the temperature of the module and improve the energy conversion efficiency of the module through the modulation of the solar spectrum. A spectrally selective nanofilm reflector located directly on the surface of PV is designed, which can reflect sunlight wavelength with low photon energy, and even enhance absorption of sunlight wavelength with high photon energy. The results indicate that nanofilm reflector can reduce spectral reflectivity integral from 9.0% to 6.93% in 400~1100 nm wavelength range, and improve spectral reflectivity integral from 23.1% to 78.34% in long wavelength range. The nanofilm reflector can reduce temperature of PV by 4.51℃ and relatively improved energy conversion efficiency of PV by 1.25% when solar irradiance is 1000 W/m2. Furthermore, the nanofilm reflector is insensitive in sunlight's angle and polarization state, and be suitable for high irradiance environment.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China Grant No. 52076064); Taishan Scholar Foundation of Shandong Province (tsqn201812105).

References

  1. Arici, M., Tukel, M., Yildiz, C ., Li, D. and Karabay, H. (2020), "Is the thermal transmittance of air-filled inclined multi-glazing windows similar to that of vertical ones", Energy Build., 229, 110515. https://doi.org/10.1016/j.enbuild.2020.110515.
  2. Caselli, D., Liu, Z.C., Shelhammer, D. and Ning C.Z. (2014), "Composition-graded nanowire solar cells fabricated in a single process for spectrum-splitting photovoltaic systems", Nano Lett., 14(10), 5772-5779. https://doi.org/10.1021/nl502662h.
  3. Cote, B., Slauch, I., Deceglie, M., Silverman, T. and Ferry, V. (2021), "Light management in bifacial photovoltaics with spectrally selective mirrors", ACS Appl. Energ. Mater., 4(6), 5397-5402. https://doi.org/10.1021/acsaem.1c01236.
  4. Cheng, Z.M., Han. H., Wang, F.Q., Yan, Y.Y., Shi, X.H., Liang, H.X., Zhang, X.P. and Shuai, Y. (2021), "Efficient radiative cooling coating with biomimetic human skin wrinkle structure", Nano Energy, 89, 106377. https://doi.org/10.1016/j.nanoen.2021.106377.
  5. Daulet, S. (2021), "One-dimensional Schottky nanodiode based on telescoping polyprismanes", Adv. Nano Res., 10(4), 339-347. https://doi.org/10.12989/anr.2021.10.5.471.
  6. Evangelos, B., Christos, T. and Zafar, S. (2021), "Investigation and optimization of a solar-assisted pumped thermal energy storage system with flat plate collectors", Energy Conv. Manag., 237, 114137. https://doi.org/10.1016/j.enconman.2021.114137.
  7. Farideh, Y., Mehran, A. and Robert, A. (2020), "Numerical modeling of a concentrated photovoltaic/thermal system which utilizes a PCM and nanofluid spectral splitting", Energy Conv. Manag., 215, 112927. https://doi.org/10.1016/j.enconman.2020.112927.
  8. Fernandes, M.R. and Schaefer, L.A. (2021), "Levelized cost of energy of hybrid concentrating photovoltaic-thermal systems based on nanofluid spectral filtering", Sol. Energy, 227, 126-136. https://doi.org/10.1016/j.solener.2021.08.041.
  9. Green, M.A. (1995), "Silicon Solar Cells: Advanced Principles & Practice", University of New South Wales, Sydney, Australia.
  10. Haviv, S., Revivo, N., Kruger, N., Manor, A., Khachatryan, B., Shustov, M. and Rotschild, C. (2020), "Luminescent solar power-PV/thermal hybrid electricity generation for cost-effective dispatchable solar energy", ACS Appl. Mater. Interf., 12, 36040-36045. https://doi.org/10.1021/acsami.0c08185.
  11. Huang. G. and Markides, C. (2021), "Spectral-splitting hybrid PV-thermal (PV-T) solar collectors employing semi-transparent solar cells as optical filters", Energy Conv. Manag., 248, 114776. https://doi.org/10.1016/j.enconman.2021.114776.
  12. Huang. J., Han. X.Y., Zhao. X.B. and Meng. C.F. (2021), "Facile preparation of core-shell Ag@SiO2 nanoparticles and their application in spectrally splitting PV/T systems", Energy, 215(A), 119111. https://doi.org/10.1016/j.energy.2020.119111.
  13. Hissouf, M., Feddaoui, M., Najim, M., Charef, A. and Kabeel, A.E. (2021), "Effect of optical, geometrical and operating parameters on the performances of glazed and unglazed PV/T system", Appl. Therm. Eng., 197, 117358, https://doi.org/10.1016/j.applthermaleng.2021.117358.
  14. Hu, M.K., Zhao, B., Suhendri, S., Cao, J., Wang, Q., Riffat, S., Yang, R., Su, Y. and Pei, G. (2022), "Experimental study on a hybrid solar photothermic and radiative cooling collector equipped with a rotatable absorber/emitter plate", Appl. Energ, 306, Part B, 118096. https://doi.org/10.1016/j.apenergy.2021.118096.
  15. Ju. X., Xu. C., Liao. Z.R., Du. X.Z., Wei G.S., Wang. Z.F. and Yang. Y.P. (2017), "A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR)", Sci. Bull., 62(20), 1388-1426. https://doi.org/10.1016/j.scib.2017.10.002.
  16. Khan, S.B., Zhang, Z.J. and Lee, S.L. (2020), "Single component: bilayer TiO2 as a durable antireflective coating", J Alloy. Compd., 834, 155137. https://doi.org/10.1016/j.jallcom.2020.155137.
  17. Kruitwagen, L., Story, K.T., Friedrich, J., Byers, L., Skillman, S., and Hepburn, C. (2021), "A global inventory of photovoltaic solar energy generating units", Nature, 598, 604-610. https://doi.org/10.1038/s41586-021-03957-7.
  18. Klaus, J., Peter, T., Eugene, A.K. and Christiane, B. (2021), "Perovskite/silicon tandem solar cells: Effect of luminescent coupling and bifaciality", Sol. RRL, 5(3), 2000628. https://doi.org/10.1002/solr.202000628.
  19. Lee, S.H. and Lee J.Y. (2018), "Homo-tandem structures to achieve the ideal external quantum efficiency in small molecular organic solar cells", Opt. Express, 26, A697-A708. https://doi.org/10.1364/OE.26.00A697.
  20. Li. H.R., He. Y.R., Wang. C.H., Wang. X.Z. and Hu. Y.W. (2019), "Tunable thermal and electricity generation enabled by spectrally selective absorption nanoparticles for photovoltaic/thermal applications", Appl. Energy, 236, 117-126. https://doi.org/10.1016/j.apenergy.2018.11.085.
  21. Liang, H.X., Wang, F.Q., Zhang, D., Cheng, Z.M., Zhang, C.X., Lin, B. and Xu, H.J. (2020), "Experimental investigation of cost-effective ZnO nanofluids based spectral splitting CPV/T system", Energy, 194, 116913. https://doi.org/10.1016/j.energy.2020.116913.
  22. Liang. S., Zheng. H.F., Ma. X.L., Liu. F.Z., Wang. G. and Zhao. Z.Y. (2021), "Study on a passive concentrating photovoltaic-membrane distillation integrated system", Energ Convers. Manage., 242, 114332. https://doi.org/10.1016/j.enconman.2021.114332.
  23. Michel, C., Blain, P., Clermont, L., Languy, F., Lenaerts, C., Fleury-Frenette, K., Decultot, M., Habraken, S., Vandormael, D., Cloots, R., Thalluri, G.K.V.V., Henrist, C., Colson, P. and Loicq, J. (2017), "Waveguide solar concentrator design with spectrally separated light", Sol. Energy, 157, 1005-1016. https://doi.org/10.1016/j.solener.2017.09.015.
  24. Mateusz, J., Topias, S., Lauri, U., Harm, O. and Mikael, R. (2018), "Effective modelling of borehole solar thermal energy storage systems in high latitudes", Geomech. Eng., 16(5), 503-512. https://doi.org/10.12989/gae.2018.16.5.503.
  25. Muhammad, J., Shazia, A., Amir, W., Faiz, R., Bilal, A., Muhammad B. and Ahson J. (2019), "Plasmonic effects and size relation of gold-platinum alloy nanoparticles", Adv. Nano Res., 7(3), 169-180. https://doi.org/10.12989/anr.2019.7.3.169.
  26. Otanicar, T., Dale, J., Orosz, M., Brekke, N., DeJarnette, D., Tunkara, E., Roberts, K. and Harikumar, P. (2018), "Experimental evaluation of a prototype hybrid CPV/T system utilizing a nanoparticle fluid absorber at elevated temperatures", Appl. Energ, 228, 1531-1539. https://doi.org/10.1016/j.apenergy.2018.07.055.
  27. Qiu, Y., Zhang, P.F., Li, Q., Zhang, Y.T. and Li, W.H. (2021), "A perfect selective metamaterial absorber for high-temperature solar energy harvesting", Sol. Energ, 230, 1165-1174. https://doi.org/10.1016/j.solener.2021.11.034.
  28. Qiao, Y., Yousef, Z., Abouzar, R., Sara, P., Angel, R., Mohamed, A., Mohammed, J., Ehsan, K. and Hamid, A. (2021), "Nano-SiO2 for efficiency of geotechnical properties of fine soils in mining and civil engineering", Adv. Nano Res., 11(3), 301-312. https://doi.org/10.12989/anr.2021.11.3.301.
  29. Robert, A., Todd, O. and Gary, R. (2012), "Nanofluid-based optical filter optimization for PV/T systems", Light Sci. Appl., 1, 34. https://doi.org/10.1038/lsa.2012.34.
  30. Ravi, S. and Vivek, B. (2021), "Recent advances in ZnO nanostructures and their future perspective", Adv. Nano Res., 11(1), 37-54. https://doi.org/10.12989/anr.2021.11.1.037.
  31. Santbergen, R. and Zolingen, R. (2008), "The absorption factor of crystalline silicon PV cells: A numerical and experimental study", Sol. Energy Mater. Sol. Cells, 92, 432-444. https://doi.org/10.1016/j.solmat.2007.10.005.
  32. Slauch, I., Deceglie, M., Silverman, T. and Ferry, V. (2018), "Spectrally selective mirrors with combined optical and thermal benefit for photovoltaic module thermal management", ACS Photonics, 5(4), 1528-1538. https://doi.org/10.1021/acsphotonics.7b01586.
  33. Tikhonravov. A.V., Trubetskov. M.K., and DeBell. G.W. (1996), "Application of the needle optimization technique to the design of optical coatings", Appl. Opt., 35, 5493-5508. https://doi.org/10.1364/AO.35.005493.
  34. Taylor, S., Long, L., McBurney, R., Sabbaghi, P., Chao, J. and Wang, L. (2020), "Spectrally-selective vanadium dioxide based tunable metafilm emitter for dynamic radiative cooling", Sol. Energy Mater. Sol. Cells, e217, 110739. https://doi.org/10.1016/j.solmat.2020.110739.
  35. Zarmai, M.T., Ekere, N.N., Oduoza, C.F. and Amalu, E.H. (2015), "A review of interconnection technologies for improved crystalline silicon solar cell photovoltaic module assembly", Appl. Energ, 154, 173-182. https://doi.org/10.1016/j.apenergy.2015.04.120.
  36. Zhang. X., Lei. D.Q., Zhang. B., Yao. P. and Wang. Z.F. (2021), "SiNx/Cu spectral beam splitting films for hybrid photovoltaic and concentrating solar thermal systems", ACS Omega, 6(33), 21709-21718. https://doi.org/10.1021/acsomega.1c03178.
  37. Zhang, C.X., Shen, C., Zhang, Y.B. and Pu, J.H. (2022), "Feasibility investigation of spectral splitting photovoltaic/thermal systems for domestic space heating", Renew Energ, 192, 231-242. https://doi.org/10.1016/j.renene.2022.04.126.