과제정보
This work was supported by the second "Zhanlan Scholar Project" Funding Project of Dalian Ocean University (191022007); 2020 Scientific Research Fund Project of Liaoning Education Department (QL202017); 2019 Science and Technology Fund project of Liaoning Province (BS201933); Funded by the Dalian Ocean University Innovation team (C202114).
참고문헌
- Afshari, B.M., Mirjavadi, S.S. and Barati, M.R. (2022), "Investigating nonlinear static behavior of hyperelastic plates using three-parameter hyperelastic model", Adv. Concr. Constr., 13(5), 377-384. https://doi.org/10.12989/acc.2022.13.5.377.
- Ahankari, S.S. and Kar, K.K. (2010), "Hysteresis measurements and dynamic mechanical characterization of functionally graded natural rubber-carbon black composites", Polym. Eng. Sci., 50(5), 871-877. https://doi.org/10.1002/pen.21601.
- Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maint., 6(2), 147-159. https:// doi.org/10.12989/smm.2019.6.2.147.
- Barati, M.R. (2017a), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., 5(4), 393-414. https://doi.org/10.12989/anr.2017.5.4.393.
- Barati, M.R. (2017b), "Vibration analysis of multi-phase nanocrystalline material nanoshells using strain gradient elasticity", Mater. Res. Express, 4(10), 105021. https://doi.org/10.1088/2053-1591/aa89fb.
- Barati, M.R. and Shahverdi, H. (2017a), "Dynamic modeling and vibration analysis of double-layered multi-phase porous nanocrystalline silicon nanoplate systems", Eur. J. Mech. A Solids, 66, 256-268. https://doi.org/10.1016/j.euromechsol.2017.07.010.
- Barati, M.R. and Shahverdi, H. (2017b), "Frequency analysis of porous nano-mechanical mass sensors made of multi-phase nanocrystalline silicon materials", Mater. Res. Express, 4(7), 075019. https://doi.org/10.1088/2053-1591/aa7ac2.
- Barati, M.R. and Shahverdi, H. (2022), "Vibration frequencies of meta-material plates based on the numerical calibration of shape factor for various cell patterns", Waves Random Complex Med., 1-19. https://doi.org/10.1080/17455030.2022.2046300.
- Barati, M.R. and Zenkour, A.M. (2018), "Analysis of postbuckling of graded porous GPL-reinforced beams with geometrical imperfection", Mech. Adv. Mater. Struct., 26(6), 503-511. https://doi.org/10.1080/15376494.2017.1400622.
- Barati, M.R. and Zenkour, A. (2019), "Investigating instability regions of harmonically loaded refined shear deformable inhomogeneous nanoplates", Iranian J. Sci. Technol. Transact. Mech. Eng., 43(3), 393-404. https://doi.org/10.1007/s40997-018-0215-4.
- Chikh, A., Bakora, A., Heireche, H., Houari, M.S.A., Tounsi, A. and Bedia, E.A. (2016), "Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory", Struct. Eng. Mech., 57(4), 617-639. https://doi.org/10.12989/sem.2016.57.4.617.
- Du, H., Gao, H.J. and Dai Pang, S. (2016), "Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet", Cement Concr. Res., 83, 114-123. https://doi.org/10.1016/j.cemconres.2016.02.005.
- Ebrahimi, F. and Barati, M.R. (2017a), "A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of magneto-electro-elastic nanobeams embedded in twoparameter elastic foundation", Adv. Nano Res., 5(4), 313-336. https://doi.org/10.12989/anr.2017.5.4.313.
- Ebrahimi, F. and Barati, M.R. (2017b), "A general higher-order nonlocal couple stress based beam model for vibration analysis of porous nanocrystalline nanobeams", Superlattice Microst., 112, 64-78. https://doi.org/10.1016/j.spmi.2017.09.010.
- Ebrahimi, F. and Barati, M.R. (2017c), "Thermal-induced nonlocal vibration characteristics of heterogeneous beams", Adv. Mater. Res., 6(2), 93. https://doi.org/10.12989/amr.2017.6.2.093.
- Ebrahimi, F. and Barati, M.R. (2017d), "Buckling analysis of nonlocal embedded shear deformable functionally graded piezoelectric nanoscale beams", Jordan J. Mech. Ind. Eng., 11(2).
- Ebrahimi, F. and Barati, M.R. (2017e), "Vibration analysis of heterogeneous nonlocal beams in thermal environment", Coupled Syst. Mech., 6(3), 251-272. https://doi.org/10.12989/csm.2017.6.3.251.
- Ebrahimi, F. and Barati, M.R. (2018a), "Static stability analysis of double-layer graphene sheet system in hygro-thermal environment", Microsyst. Technol., 24(9), 3713-3727. https://doi.org/10.1007/s00542-018-3827-0.
- Ebrahimi, F. and Barati, M.R. (2018b), "Influence of neutral surface position on dynamic characteristics of in-homogeneous piezo-magnetically actuated nanoscale plates", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(17), 3125-3143. https://doi.org/10.1177/0954406217728977.
- Ebrahimi, F. and Barati, M.R. (2018c), "A nonlocal strain gradient refined plate model for thermal vibration analysis of embedded graphene sheets via DQM", Struct. Eng. Mech., 66(6), 693-701. https://doi.org/10.12989/sem.2018.66.6.693.
- Ebrahimi, F. and Barati, M. R. (2018d), "A unified formulation for modeling of inhomogeneous nonlocal beams", Struct. Eng. Mech., 66(3), 369-377. https://doi.org/10.12989/sem.2018.66.3.369.
- Ebrahimi, F. and Barati, M.R. (2018e), "Thermo-mechanical vibration analysis of nonlocal flexoelectric/piezoelectric beams incorporating surface effects", Struct. Eng. Mech., 65(4), 435-445. https://doi.org/10.12989/sem.2018.65.4.435.
- Ebrahimi, F. and Barati, M.R. (2018f), "Size-dependent thermally affected wave propagation analysis in nonlocal strain gradient functionally graded nanoplates via a quasi-3D plate theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(1), 162-173. https://doi.org/10.1177/0954406216674243.
- Ebrahimi, F. and Barati, M.R. (2019a), "Buckling characteristics of bilayer graphene sheets subjected to humid thermomechanical loading", Handbook Graphene, 8, 433. https://doi.org/10.1002/9781119468455.ch138
- Ebrahimi, F. and Barati, M.R. (2019b), "On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates", Adv. Nano Res., 7(1), 63-76. https://doi.org/10.12989/anr.2019.7.1.063.
- Ebrahimi, F., Barati, M.R. and Mahesh, V. (2019), "Dynamic modeling of smart magneto-electro-elastic curved nanobeams", Adv. Nano Res., 7(3), 145-155. https://doi.org/10.12989/anr.2019.7.3.145.
- Ebrahimi, F., Barati, M.R. and Tornabene, F. (2019), "Mechanics of nonlocal advanced magneto-electro-viscoelastic plates", Struct. Eng. Mech., 71(3), 257-269. https://doi.org/10.12989/sem.2019.71.3.257.
- Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M. and Lanka, S. (2011), "The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNTreinforced aluminium composites", Compos. Part A, 42(3), 234-243. https://doi.org/10.1016/j.compositesa.2010.11.008
- Fang, M., Wang, K., Lu, H., Yang, Y. and Nutt, S. (2009), "Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites," J. Mater. Chem., 19(38), 7098-7105. https://doi.org/10.1039/B908220D.
- Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and nonuniform porosities", Coupled Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
- Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struct., 140, 110-119. https://doi.org/10.1016/j.engstruct.2017.02.052.
- Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B and Schulte, K. (2004), "Carbon nanotube-reinforced epoxycomposites: enhanced stiffness and fracture toughness at low nanotube content", Compos. Sci. Technol., 64(15), 2363-2371. https://doi.org/10.1016/j.compscitech.2004.04.002.
- Guan, H., Huang, S., Ding, J., Tian, F., Xu, Q. and Zhao, J. (2020), "Chemical environment and magnetic moment effects on point defect formations in CoCrNi-based concentrated solid-solution alloys," Acta Materialia, 187, 122-134. https://doi.org/10.1016/j.actamat.2020.01.044.
- Guenaneche, B., Benyoucef, S., Tounsi, A. and Adda Bedia, E. A. (2019), "Improved analytical method for adhesive stresses in plated beam: Effect of shear deformation", Adv. Concr. Constr., 7(3), 151-166. https://doi.org/10.12989/acc.2019.7.3.151.
- Hao, P., Wang, B., Du, K., Li, G., Tian, K., Sun, Y. and Ma, Y. (2016), "Imperfection-insensitive design of stiffened conical shells based on equivalent multiple perturbation load approach", Compos. Struct., 136, 405-413. https://doi.org/10.1016/j.compstruct.2015.10.022.
- Hao, R.B., Lu, Z.Q., Ding, H. and Chen, L.Q. (2022), "A nonlinear vibration isolator supported on a flexible plate: analysis and experiment", Nonlinear Dynamics, 108(2), 941-958. https://doi.org/10.1007/s11071-022-07243-7.
- King, J.A., Klimek, D.R., Miskioglu, I. and Odegard, G.M. (2013), "Mechanical properties of graphene nanoplatelet/epoxy composites", J. Appl. Polym. Sci., 128(6), 4217-4223. https://doi.org/10.1002/app.38645.
- Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
- Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concr., 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.
- Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041.
- Lin, F., Yang, C., Zeng, Q.H. and Xiang, Y. (2018), "Morphological and mechanical properties of graphenereinforced PMMA nanocomposites using a multiscale analysis", Comput. Mater. Sci., 150, 107-120. https://doi.org/10.1016/j.commatsci.2018.03.048
- Liu, W., Huang, F., Liao, Y., Zhang, J., Ren, G., Zhuang, Z. and Wang, C. (2008), "Treatment of CrVI-Containing Mg (OH) 2 Nanowaste", Angewandte Chemie, 120(30), 5701-5704. https://doi.org/10.1002/ange.200800172.
- Metwally, I.M. (2014), "Three-dimensional finite element analysis of reinforced concrete slabs strengthened with epoxy-bonded steel plates", Adv. Concr. Constr., 2(2), 91. https://doi.org/10.12989/acc.2014.2.2.091.
- Mirjavadi, S.S., Khan, I., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020a)", Analyzing nonlinear vibration of metal foam stiffened toroidal convex/concave shell segments considering porosity distribution", Mech. Based Des. Struct., 1-17. https://doi.org/10.1080/15397734.2020.1841654.
- Mirjavadi, S.S., Yahya, Y.Z., Forsat, M., Khan, I., Hamouda, A.M.S. and Barati, M.R. (2020b)", Magneto-electric effects on nonlocal nonlinear dynamic characteristics of imperfect multiphase magneto-electro-elastic beams", J. Magnet. Magnet. Mater., 503, 166649. https://doi.org/10.1016/j.jmmm.2020.166649.
- Mirjavadi, S.S., Bayani, H., Khoshtinat, N., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020c), "On nonlinear vibration behavior of piezo-magnetic doubly-curved nanoshells", Smart Struct. Syst., 26(5), 631-640. https://doi.org/10.12989/sss.2020.26.5.631.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A. M.S. (2020d), "Nonlinear forced vibrations of multi-scale epoxy/CNT/fiberglass truncated conical shells and annular plates via 3D Mori-Tanaka scheme", Steel Compos. Struct., 35(6), 765-777. https://doi.org/10.12989/scs.2020.35.6.765.
- Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Khan, I. (2020e), "Finite element based post-buckling analysis of refined graphene oxide reinforced concrete beams with geometrical imperfection", Comput. Concr., 25(4), 283-291. https://doi.org/10.12989/cac.2020.25.4.283.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A. M.S. (2021), "Investigating nonlinear vibrations of multi-scale truncated conical shell segments with carbon nanotube/fiberglass reinforcement using a higher order conical shell theory", J. Strain Anal. Eng. Des., 56(3), 181-192. https://doi.org/10.1177/0309324720939811.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A. S. (2022), "Nonlinear vibrations of variable thickness curved panels made of multi-scale epoxy/fiberglass/CNT material using Jacobi elliptic functions", Mech. Based Des. Struct., 50(7), 2333-2349. https://doi.org/10.1080/15397734.2020.1777156.
- Mohammed, A., Sanjayan, J.G., Nazari, A. and Al-Saadi, N.T.K. (2017), "Effects of graphene oxide in enhancing the performance of concrete exposed to high-temperature", Aust. J. Civil Eng., 15(1), 61-71. https://doi.org/10.1080/14488353.2017.1372849.
- Nieto, A., Bisht, A., Lahiri, D., Zhang, C and Agarwal, A. (2017), "Graphene reinforced metal and ceramic matrix composites: A review", Int. Mater. Rev., 62(5), 241-302. https://doi.org/10.1080/09506608.2016.1219481.
- Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.
- Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165.
- Shamsaei, E., de Souza, F.B., Yao, X., Benhelal, E., Akbari, A. and Duan, W. (2018), "Graphene-based nanosheets for stronger and more durable concrete: A review", Constr. Build. Mater., 183, 642-660. https://doi.org/10.1016/j.conbuildmat.2018.06.201.
- Shen, H.S., Xiang, Y., Lin, F. and Hui, D. (2017). Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments", Compos. Part B Eng., 119, 67-78. https://doi.org/10.1016/j.compositesb.2017.03.020.
- Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070.
- Wang, L. and Su, R.K.L. (2013), "A unified design procedure for preloaded rectangular RC columns strengthened with postcompressed plates", Adv. Concr. Constr., 1(2), 163. https://doi.org/10.12989/acc.2013.1.2.163.
- Wang, B., Zhu, S., Hao, P., Bi, X., Du, K., Chen, B., and Chao, Y.J. (2018), "Buckling of quasi-perfect cylindrical shell under axial compression: A combined experimental and numerical investigation", Int. J. Solids Struct., 130, 232-247. https://doi.org/10.1016/j.ijsolstr.2017.09.029.
- Wu, Y., Zhao, Y., Han, X., Jiang, G., Shi, J., Liu, P. and Yamada, Y. (2021), "Ultra-fast growth of cuprate superconducting films: Dual-phase liquid assisted epitaxy and strong flux pinning", Mater. Today Phys., 18, 100400. https://doi.org/10.1016/j.mtphys.2021.100400.
- Xiong, Q.M., Chen, Z., Huang, J.T., Zhang, M., Song, H., Hou, X.F. and Feng, Z.J. (2020), "Preparation, structure and mechanical properties of Sialon ceramics by transition metalcatalyzed nitriding reaction", Rare Metals, 39(5), 589-596. https://doi.org/10.1007/s12598-020-01385-6.
- Yang, B., Yang, J. and Kitipornchai, S. (2017), "Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3D elasticity", Meccanica, 52(10), 2275-2292. https://doi.org/10.1007/s11012-016-0579-8.
- Zaheer, M.M., Jafri, M.S. and Sharma, R. (2019), "Effect of diameter of MWCNT reinforcements on the mechanical properties of cement composites", Adv. Concr. Constr., 8(3), 207-215. https://doi.org/10.12989/acc.2019.8.3.207.
- Zhang, L.W. (2017), "On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates", Compos. Struct., 160, 824-837. https://doi.org/10.1016/j.compstruct.2016.10.116.
- Zhang, Z., Li, Y., Wu, H., Zhang, H., Wu, H., Jiang, S. and Chai, G. (2020), "Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the firstorder shear deformation theory", Mech. Adv. Mater. Struct., 27, 3-11. https://doi.org/10.1080/15376494.2018.1444216.