DOI QR코드

DOI QR Code

Nonlinear static behavior of three-layer annular plates reinforced with nanoparticles

  • Liu, Shouhua (College of Architectural Engineering, Huaiyin Institute of Technology) ;
  • Yu, Jikun (Institute of Applied Technology, Dalian Ocean University) ;
  • Ali, H. Elhosiny (Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University) ;
  • Al-Masoudy, Murtadha M. (Air conditioning and refrigeration Technique Engineering Department, Al-Mustaqbal University College)
  • Received : 2021.06.26
  • Accepted : 2022.06.15
  • Published : 2022.11.25

Abstract

Static stability behaviors of annular sandwich plates constructed from two layers of particle-reinforced nanocomposites have been investigated in the present article. The type of nanoscale particles has been considered to be graphene oxide powders (GOPs). The particles are assumed to have uniform and graded dispersions inside the matrix and the material properties have been defined according to Halpin-Tsai micromechanical model. The core layer is assumed to have honeycomb configuration. Annular plate has been formulated according to thin shell assumptions considering geometrical nonlinearities. After solving the governing equations via Galerkin's technique, it is showed that the post-buckling curves of annular sandwich plates rely on the core wall thickness, amount of GOP particles, sector radius, and thickness of layers.

Keywords

Acknowledgement

This work was supported by the second "Zhanlan Scholar Project" Funding Project of Dalian Ocean University (191022007); 2020 Scientific Research Fund Project of Liaoning Education Department (QL202017); 2019 Science and Technology Fund project of Liaoning Province (BS201933); Funded by the Dalian Ocean University Innovation team (C202114).

References

  1. Afshari, B.M., Mirjavadi, S.S. and Barati, M.R. (2022), "Investigating nonlinear static behavior of hyperelastic plates using three-parameter hyperelastic model", Adv. Concr. Constr., 13(5), 377-384. https://doi.org/10.12989/acc.2022.13.5.377.
  2. Ahankari, S.S. and Kar, K.K. (2010), "Hysteresis measurements and dynamic mechanical characterization of functionally graded natural rubber-carbon black composites", Polym. Eng. Sci., 50(5), 871-877. https://doi.org/10.1002/pen.21601.
  3. Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maint., 6(2), 147-159. https:// doi.org/10.12989/smm.2019.6.2.147.
  4. Barati, M.R. (2017a), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., 5(4), 393-414. https://doi.org/10.12989/anr.2017.5.4.393.
  5. Barati, M.R. (2017b), "Vibration analysis of multi-phase nanocrystalline material nanoshells using strain gradient elasticity", Mater. Res. Express, 4(10), 105021. https://doi.org/10.1088/2053-1591/aa89fb.
  6. Barati, M.R. and Shahverdi, H. (2017a), "Dynamic modeling and vibration analysis of double-layered multi-phase porous nanocrystalline silicon nanoplate systems", Eur. J. Mech. A Solids, 66, 256-268. https://doi.org/10.1016/j.euromechsol.2017.07.010.
  7. Barati, M.R. and Shahverdi, H. (2017b), "Frequency analysis of porous nano-mechanical mass sensors made of multi-phase nanocrystalline silicon materials", Mater. Res. Express, 4(7), 075019. https://doi.org/10.1088/2053-1591/aa7ac2.
  8. Barati, M.R. and Shahverdi, H. (2022), "Vibration frequencies of meta-material plates based on the numerical calibration of shape factor for various cell patterns", Waves Random Complex Med., 1-19. https://doi.org/10.1080/17455030.2022.2046300.
  9. Barati, M.R. and Zenkour, A.M. (2018), "Analysis of postbuckling of graded porous GPL-reinforced beams with geometrical imperfection", Mech. Adv. Mater. Struct., 26(6), 503-511. https://doi.org/10.1080/15376494.2017.1400622.
  10. Barati, M.R. and Zenkour, A. (2019), "Investigating instability regions of harmonically loaded refined shear deformable inhomogeneous nanoplates", Iranian J. Sci. Technol. Transact. Mech. Eng., 43(3), 393-404. https://doi.org/10.1007/s40997-018-0215-4.
  11. Chikh, A., Bakora, A., Heireche, H., Houari, M.S.A., Tounsi, A. and Bedia, E.A. (2016), "Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory", Struct. Eng. Mech., 57(4), 617-639. https://doi.org/10.12989/sem.2016.57.4.617.
  12. Du, H., Gao, H.J. and Dai Pang, S. (2016), "Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet", Cement Concr. Res., 83, 114-123. https://doi.org/10.1016/j.cemconres.2016.02.005.
  13. Ebrahimi, F. and Barati, M.R. (2017a), "A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of magneto-electro-elastic nanobeams embedded in twoparameter elastic foundation", Adv. Nano Res., 5(4), 313-336. https://doi.org/10.12989/anr.2017.5.4.313.
  14. Ebrahimi, F. and Barati, M.R. (2017b), "A general higher-order nonlocal couple stress based beam model for vibration analysis of porous nanocrystalline nanobeams", Superlattice Microst., 112, 64-78. https://doi.org/10.1016/j.spmi.2017.09.010.
  15. Ebrahimi, F. and Barati, M.R. (2017c), "Thermal-induced nonlocal vibration characteristics of heterogeneous beams", Adv. Mater. Res., 6(2), 93. https://doi.org/10.12989/amr.2017.6.2.093.
  16. Ebrahimi, F. and Barati, M.R. (2017d), "Buckling analysis of nonlocal embedded shear deformable functionally graded piezoelectric nanoscale beams", Jordan J. Mech. Ind. Eng., 11(2).
  17. Ebrahimi, F. and Barati, M.R. (2017e), "Vibration analysis of heterogeneous nonlocal beams in thermal environment", Coupled Syst. Mech., 6(3), 251-272. https://doi.org/10.12989/csm.2017.6.3.251.
  18. Ebrahimi, F. and Barati, M.R. (2018a), "Static stability analysis of double-layer graphene sheet system in hygro-thermal environment", Microsyst. Technol., 24(9), 3713-3727. https://doi.org/10.1007/s00542-018-3827-0.
  19. Ebrahimi, F. and Barati, M.R. (2018b), "Influence of neutral surface position on dynamic characteristics of in-homogeneous piezo-magnetically actuated nanoscale plates", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(17), 3125-3143. https://doi.org/10.1177/0954406217728977.
  20. Ebrahimi, F. and Barati, M.R. (2018c), "A nonlocal strain gradient refined plate model for thermal vibration analysis of embedded graphene sheets via DQM", Struct. Eng. Mech., 66(6), 693-701. https://doi.org/10.12989/sem.2018.66.6.693.
  21. Ebrahimi, F. and Barati, M. R. (2018d), "A unified formulation for modeling of inhomogeneous nonlocal beams", Struct. Eng. Mech., 66(3), 369-377. https://doi.org/10.12989/sem.2018.66.3.369.
  22. Ebrahimi, F. and Barati, M.R. (2018e), "Thermo-mechanical vibration analysis of nonlocal flexoelectric/piezoelectric beams incorporating surface effects", Struct. Eng. Mech., 65(4), 435-445. https://doi.org/10.12989/sem.2018.65.4.435.
  23. Ebrahimi, F. and Barati, M.R. (2018f), "Size-dependent thermally affected wave propagation analysis in nonlocal strain gradient functionally graded nanoplates via a quasi-3D plate theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(1), 162-173. https://doi.org/10.1177/0954406216674243.
  24. Ebrahimi, F. and Barati, M.R. (2019a), "Buckling characteristics of bilayer graphene sheets subjected to humid thermomechanical loading", Handbook Graphene, 8, 433. https://doi.org/10.1002/9781119468455.ch138
  25. Ebrahimi, F. and Barati, M.R. (2019b), "On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates", Adv. Nano Res., 7(1), 63-76. https://doi.org/10.12989/anr.2019.7.1.063.
  26. Ebrahimi, F., Barati, M.R. and Mahesh, V. (2019), "Dynamic modeling of smart magneto-electro-elastic curved nanobeams", Adv. Nano Res., 7(3), 145-155. https://doi.org/10.12989/anr.2019.7.3.145.
  27. Ebrahimi, F., Barati, M.R. and Tornabene, F. (2019), "Mechanics of nonlocal advanced magneto-electro-viscoelastic plates", Struct. Eng. Mech., 71(3), 257-269. https://doi.org/10.12989/sem.2019.71.3.257.
  28. Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M. and Lanka, S. (2011), "The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNTreinforced aluminium composites", Compos. Part A, 42(3), 234-243. https://doi.org/10.1016/j.compositesa.2010.11.008
  29. Fang, M., Wang, K., Lu, H., Yang, Y. and Nutt, S. (2009), "Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites," J. Mater. Chem., 19(38), 7098-7105. https://doi.org/10.1039/B908220D.
  30. Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and nonuniform porosities", Coupled Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
  31. Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struct., 140, 110-119. https://doi.org/10.1016/j.engstruct.2017.02.052.
  32. Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B and Schulte, K. (2004), "Carbon nanotube-reinforced epoxycomposites: enhanced stiffness and fracture toughness at low nanotube content", Compos. Sci. Technol., 64(15), 2363-2371. https://doi.org/10.1016/j.compscitech.2004.04.002.
  33. Guan, H., Huang, S., Ding, J., Tian, F., Xu, Q. and Zhao, J. (2020), "Chemical environment and magnetic moment effects on point defect formations in CoCrNi-based concentrated solid-solution alloys," Acta Materialia, 187, 122-134. https://doi.org/10.1016/j.actamat.2020.01.044.
  34. Guenaneche, B., Benyoucef, S., Tounsi, A. and Adda Bedia, E. A. (2019), "Improved analytical method for adhesive stresses in plated beam: Effect of shear deformation", Adv. Concr. Constr., 7(3), 151-166. https://doi.org/10.12989/acc.2019.7.3.151.
  35. Hao, P., Wang, B., Du, K., Li, G., Tian, K., Sun, Y. and Ma, Y. (2016), "Imperfection-insensitive design of stiffened conical shells based on equivalent multiple perturbation load approach", Compos. Struct., 136, 405-413. https://doi.org/10.1016/j.compstruct.2015.10.022.
  36. Hao, R.B., Lu, Z.Q., Ding, H. and Chen, L.Q. (2022), "A nonlinear vibration isolator supported on a flexible plate: analysis and experiment", Nonlinear Dynamics, 108(2), 941-958. https://doi.org/10.1007/s11071-022-07243-7.
  37. King, J.A., Klimek, D.R., Miskioglu, I. and Odegard, G.M. (2013), "Mechanical properties of graphene nanoplatelet/epoxy composites", J. Appl. Polym. Sci., 128(6), 4217-4223. https://doi.org/10.1002/app.38645.
  38. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  39. Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concr., 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.
  40. Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041.
  41. Lin, F., Yang, C., Zeng, Q.H. and Xiang, Y. (2018), "Morphological and mechanical properties of graphenereinforced PMMA nanocomposites using a multiscale analysis", Comput. Mater. Sci., 150, 107-120. https://doi.org/10.1016/j.commatsci.2018.03.048
  42. Liu, W., Huang, F., Liao, Y., Zhang, J., Ren, G., Zhuang, Z. and Wang, C. (2008), "Treatment of CrVI-Containing Mg (OH) 2 Nanowaste", Angewandte Chemie, 120(30), 5701-5704. https://doi.org/10.1002/ange.200800172.
  43. Metwally, I.M. (2014), "Three-dimensional finite element analysis of reinforced concrete slabs strengthened with epoxy-bonded steel plates", Adv. Concr. Constr., 2(2), 91. https://doi.org/10.12989/acc.2014.2.2.091.
  44. Mirjavadi, S.S., Khan, I., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020a)", Analyzing nonlinear vibration of metal foam stiffened toroidal convex/concave shell segments considering porosity distribution", Mech. Based Des. Struct., 1-17. https://doi.org/10.1080/15397734.2020.1841654.
  45. Mirjavadi, S.S., Yahya, Y.Z., Forsat, M., Khan, I., Hamouda, A.M.S. and Barati, M.R. (2020b)", Magneto-electric effects on nonlocal nonlinear dynamic characteristics of imperfect multiphase magneto-electro-elastic beams", J. Magnet. Magnet. Mater., 503, 166649. https://doi.org/10.1016/j.jmmm.2020.166649.
  46. Mirjavadi, S.S., Bayani, H., Khoshtinat, N., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020c), "On nonlinear vibration behavior of piezo-magnetic doubly-curved nanoshells", Smart Struct. Syst., 26(5), 631-640. https://doi.org/10.12989/sss.2020.26.5.631.
  47. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A. M.S. (2020d), "Nonlinear forced vibrations of multi-scale epoxy/CNT/fiberglass truncated conical shells and annular plates via 3D Mori-Tanaka scheme", Steel Compos. Struct., 35(6), 765-777. https://doi.org/10.12989/scs.2020.35.6.765.
  48. Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Khan, I. (2020e), "Finite element based post-buckling analysis of refined graphene oxide reinforced concrete beams with geometrical imperfection", Comput. Concr., 25(4), 283-291. https://doi.org/10.12989/cac.2020.25.4.283.
  49. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A. M.S. (2021), "Investigating nonlinear vibrations of multi-scale truncated conical shell segments with carbon nanotube/fiberglass reinforcement using a higher order conical shell theory", J. Strain Anal. Eng. Des., 56(3), 181-192. https://doi.org/10.1177/0309324720939811.
  50. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A. S. (2022), "Nonlinear vibrations of variable thickness curved panels made of multi-scale epoxy/fiberglass/CNT material using Jacobi elliptic functions", Mech. Based Des. Struct., 50(7), 2333-2349. https://doi.org/10.1080/15397734.2020.1777156.
  51. Mohammed, A., Sanjayan, J.G., Nazari, A. and Al-Saadi, N.T.K. (2017), "Effects of graphene oxide in enhancing the performance of concrete exposed to high-temperature", Aust. J. Civil Eng., 15(1), 61-71. https://doi.org/10.1080/14488353.2017.1372849.
  52. Nieto, A., Bisht, A., Lahiri, D., Zhang, C and Agarwal, A. (2017), "Graphene reinforced metal and ceramic matrix composites: A review", Int. Mater. Rev., 62(5), 241-302. https://doi.org/10.1080/09506608.2016.1219481.
  53. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.
  54. Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165.
  55. Shamsaei, E., de Souza, F.B., Yao, X., Benhelal, E., Akbari, A. and Duan, W. (2018), "Graphene-based nanosheets for stronger and more durable concrete: A review", Constr. Build. Mater., 183, 642-660. https://doi.org/10.1016/j.conbuildmat.2018.06.201.
  56. Shen, H.S., Xiang, Y., Lin, F. and Hui, D. (2017). Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments", Compos. Part B Eng., 119, 67-78. https://doi.org/10.1016/j.compositesb.2017.03.020.
  57. Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070.
  58. Wang, L. and Su, R.K.L. (2013), "A unified design procedure for preloaded rectangular RC columns strengthened with postcompressed plates", Adv. Concr. Constr., 1(2), 163. https://doi.org/10.12989/acc.2013.1.2.163.
  59. Wang, B., Zhu, S., Hao, P., Bi, X., Du, K., Chen, B., and Chao, Y.J. (2018), "Buckling of quasi-perfect cylindrical shell under axial compression: A combined experimental and numerical investigation", Int. J. Solids Struct., 130, 232-247. https://doi.org/10.1016/j.ijsolstr.2017.09.029.
  60. Wu, Y., Zhao, Y., Han, X., Jiang, G., Shi, J., Liu, P. and Yamada, Y. (2021), "Ultra-fast growth of cuprate superconducting films: Dual-phase liquid assisted epitaxy and strong flux pinning", Mater. Today Phys., 18, 100400. https://doi.org/10.1016/j.mtphys.2021.100400.
  61. Xiong, Q.M., Chen, Z., Huang, J.T., Zhang, M., Song, H., Hou, X.F. and Feng, Z.J. (2020), "Preparation, structure and mechanical properties of Sialon ceramics by transition metalcatalyzed nitriding reaction", Rare Metals, 39(5), 589-596. https://doi.org/10.1007/s12598-020-01385-6.
  62. Yang, B., Yang, J. and Kitipornchai, S. (2017), "Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3D elasticity", Meccanica, 52(10), 2275-2292. https://doi.org/10.1007/s11012-016-0579-8.
  63. Zaheer, M.M., Jafri, M.S. and Sharma, R. (2019), "Effect of diameter of MWCNT reinforcements on the mechanical properties of cement composites", Adv. Concr. Constr., 8(3), 207-215. https://doi.org/10.12989/acc.2019.8.3.207.
  64. Zhang, L.W. (2017), "On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates", Compos. Struct., 160, 824-837. https://doi.org/10.1016/j.compstruct.2016.10.116.
  65. Zhang, Z., Li, Y., Wu, H., Zhang, H., Wu, H., Jiang, S. and Chai, G. (2020), "Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the firstorder shear deformation theory", Mech. Adv. Mater. Struct., 27, 3-11. https://doi.org/10.1080/15376494.2018.1444216.