DOI QR코드

DOI QR Code

Recent Advances in Electrochromic Sensors

전기화학 기반의 전기 변색 센서 연구 동향

  • Seo, Minjee (Department of Chemistry Education, Korea National University of Education)
  • 서민지 (한국교원대학교 화학교육과)
  • Received : 2022.10.08
  • Accepted : 2022.11.09
  • Published : 2022.11.30

Abstract

Along with the increasing need for point-of-care diagnostics, development of portable, user-friendly, as well as sensitive sensors have gained intensive attention. Among various strategies, electrochromic sensors, which are electrochemically operated colorimetric sensors, have been actively studied. With their ability to report the presence and concentration of analytes by optical signals, electrochromic sensors utilize the advantages of both electrochemical and colorimetric sensors, enabling the simplification of device composition as well as convenient interpretation of results. Up to date, electrochromic sensors have been applied for a wide range of analytes, and further developments such as the introduction of flexible platforms or self-powered systems have been reported, providing a path towards the development of wearable sensor devices. In this review, various types of electrochromic sensors, according to the main strategy in which the electrochemical signals are converted to colorimetric signals, are introduced.

현장 진단 검사가 가능한 센서에 대한 수요가 급증함에 따라, 이동성과 편리성이 개선된 센서에 대한 필요성이 대두되고 있다. 다양한 형태의 센서들 중에서도, 전기 변색 물질을 도입하여 분석 물질의 존재 유무 및 농도를 색 변화를 통해 나타낼 수 있는 전기 변색 센서들은 기존의 전기화학 센서 및 비색 센서의 강점들을 합친 형태의 센서로 각광받고 있다. 전기 변색 센서들은 기존 센서들에 비해 소형화 및 단순화하기 용이하며, 결과 해석이 간편하다는 장점을 지니고 있어 넓은 범위의 분석 물질들에 대해 활발히 연구되어 왔다. 더 나아가, 최근에는 전기 변색 센서를 유연한 기판 위에 형성하거나, 센서 자체에서 자가 발전이 가능하도록 발전이 이루어지고 있어 분석 물질에 대한 실시간 모니터링이 가능한 웨어러블 센서로 활용될 수 있을 것으로 기대된다. 이 리뷰에서는 다양한 형태의 전기 변색 센서들을 주요 전략 및 특징에 따라 나누어 그 원리 및 응용을 소개하였다.

Keywords

References

  1. S. K. Vashist, P. B. Luppa, L. Y. Yeo, A. Ozcan, and J. H. T. Luong, Emerging technologies for next-generation point-of-care testing, Trends Biotechnol., 33, 692-705 (2015). https://doi.org/10.1016/j.tibtech.2015.09.001
  2. S. H. Kim and I. S. Shin, Point-of-care diagnostics for infectious diseases: Present and future, Korean J. Med., 93(2), 181-187 (2018). https://doi.org/10.3904/kjm.2018.93.2.181
  3. K. H. Han, I. S. Shin, and D. Y. Yoon, A Study on the Detection Characteristics in Glucose and Fabrication of Bi-Enzyme Electrode using Electrochemical Method, J. Korean Electrochem. Soc., 23(3), 66-72 (2020)
  4. D. W. Hwang, S. Lee, M. Seo, and T. D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors - a review, Anal. Chim. Acta, 1033, 1-34 (2018) https://doi.org/10.1016/j.aca.2018.05.051
  5. C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, and S. Yao, Recent advances in electrochemical glucose biosensors: a review, RSC Adv., 3, 4473-4491 (2013). https://doi.org/10.1039/c2ra22351a
  6. Z. H. Sheng, X. Q. Zheng, J. Y. Xu, W. J. Bao, F. B. Wang, and X. H. Xia, Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid, Biosens. Bioelectron., 34(1), 125-131 (2012) https://doi.org/10.1016/j.bios.2012.01.030
  7. X. Chen, G. Wu, Z. Cai, M. Oyama, and X. Chen, Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid, Microchim. Acta, 181, 689-705 (2014). https://doi.org/10.1007/s00604-013-1098-0
  8. S. Palanisamy, S. Ku, and S.-M. Chen, Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite, Microchim. Acta, 180, 1037-1042 (2013). https://doi.org/10.1007/s00604-013-1028-1
  9. K. Jackowska and P. Krysinski, New trends in the electrochemical sensing of dopamine, Anal. Bioanal. Chem., 405, 3753-3771 (2013). https://doi.org/10.1007/s00216-012-6578-2
  10. E. Nagles, O. Garcia-Beltran, and J. A. Calderon, Evaluation of the usefulness of a novel electrochemical sensor in detecting uric acid and dopamine in the presence of ascorbic acid using a screen-printed carbon electrode modified with single walled carbon nanotubes and ionic liquids, Electrochim. Acta, 258, 512-523 (2017). https://doi.org/10.1016/j.electacta.2017.11.093
  11. S. Y. Yeon, M. Seo, Y. Kim, H. Hong, and T. D. Chung, Paper-based electrochromic glucose sensor with polyaniline on indium tin oxide nanoparticle layer as the optical readout, Biosens. Bioelectron., 203, 114002 (2022). https://doi.org/10.1016/j.bios.2022.114002
  12. D. D. Liana, B. Raguse, J. J. Gooding, and E. Chow, Toward paper-based sensors: Turning electrical signals into an optical readout system, ACS Appl. Mater. Interfaces, 7(34), 19201-19209 (2015). https://doi.org/10.1021/acsami.5b04941
  13. S. Santiago-Malagon, D. Rio-Colin, H. Azizkhani, M. Aller-Pellitero, G. Guirado, and F. J. D. Campo, A selfpowered skin-patch electrochromic biosensor, Biosens. Bioelectron., 175, 112879 (2021). https://doi.org/10.1016/j.bios.2020.112879
  14. X. Zhang, Y. Jing, Q. Zhai, Y. Yu, H. Xing, J. Li, and E. Wang, Point-of-care diagnoses: Flexible patterning technique for self-powered wearable sensors, Anal. Chem., 90(20), 11780-11784 (2018). https://doi.org/10.1021/acs.analchem.8b02838
  15. H. Liu and R. M. Crooks, Paper-based electrochemical sensing platform with integral battery and electrochromic read-out, Anal. Chem., 84(5), 2528-2532 (2012). https://doi.org/10.1021/ac203457h
  16. J. R. Platt, Electrochromism, a possible change of color producible in dyes by an electric field, J. Chem. Phys., 34, 862-863 (1961). https://doi.org/10.1063/1.1731686
  17. R. J. Mortimer, Electrochromic materials, Annu. Rev. Mater. Res., 41, 241-268 (2011). https://doi.org/10.1146/annurev-matsci-062910-100344
  18. V. Rai, R. S. Singh, D. J. Blackwood, and D. Zhili, A review on recent advances in electrochromic devices: A material approach, Adv. Eng. Mater., 22(8), 2000082 (2020). https://doi.org/10.1002/adem.202000082
  19. G. G. Morbioli, T. Mazzu-Nascimento, A. M. Stockton, and E. Carrilho, Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (𝜇PADs) - A review, Anal. Chim. Acta, 970, 1-22 (2017). https://doi.org/10.1016/j.aca.2017.03.037
  20. K. Yamada, H. Shibata, K. Suzuki, and D. Citterio, Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges, Lab. Chip, 17, 1206-1249 (2017). https://doi.org/10.1039/C6LC01577H
  21. W. J. Zhu, D. Q. Feng, M. Chen, Z. D. Chen, R. Zhu, H. L. Fang, and W. Wang, Bienzyme colorimetric detection of glucose with self-calibration based on tree-shaped paper strip, Sens. Actuators B Chem., 190, 414-418 (2014). https://doi.org/10.1016/j.snb.2013.09.007
  22. G. Cai, J. Wang, and P. S. Lee, Next-generation multifunctional electrochromic devices, Acc. Chem. Res., 49(8), 1469-1476 (2016). https://doi.org/10.1021/acs.accounts.6b00183
  23. C. G. Granqvist, Electrochromics for smart windows: Oxide-based thin films and devices, Thin Solid Films, 564, 1-38 (2014). https://doi.org/10.1016/j.tsf.2014.02.002
  24. P. Yang, P. Sun, and W. Mai, Electrochromic energy storage devices, Mater. Today, 19(7), 394-402 (2016). https://doi.org/10.1016/j.mattod.2015.11.007
  25. P. R. Somani and S. Radhakrishnan, Electrochromic materials and devices: present and future, Mater. Chem. Phys., 77(1), 117-133 (2003). https://doi.org/10.1016/S0254-0584(01)00575-2
  26. M. A. F. Nejad, S. Ranjbar, C. Parolo, E. P. Nguyen, R. ALvarez-Diduk, M. R. Hormozi-Nezhad, and A. Merkoci, Electrochromism: An emerging and promising approach in (bio)sensing technology, Mater. Today, 50, 476-498 (2021). https://doi.org/10.1016/j.mattod.2021.06.015
  27. R. Kumar, D. K. Pathak, and A. Chaudhary, Current status of some electrochromic materials and devices: A brief review, J. Phys. Appl. Phys., 54, 503002 (2021). https://doi.org/10.1088/1361-6463/ac10d6
  28. Z. Jin, Y. Su, and Y. Duan, An improved optical pH sensor based on polyaniline, Sens. Actuators B Chem., 71(1-2), 118-122 (2000). https://doi.org/10.1016/S0925-4005(00)00597-9
  29. Y. Lu, S. H. Lam, W. Lu, L. Shao, T. H. Chow, and J. Wang, All-state switching of the Mie resonance of conductive polyaniline nanospheres, Nano Lett., 22, 1406-1414 (2022). https://doi.org/10.1021/acs.nanolett.1c04969
  30. M. A. Pellitero and F. J. del Campo, Electrochromic sensors: Innovative devices enabled by spectroelectrochemical methods, Curr. Opin. Electrochem., 15, 66-72 (2019). https://doi.org/10.1016/j.coelec.2019.03.004
  31. S. Ranjbar, M. A. F. Nejad, C. Parolo, S. Shahrokhian, and A. Merkoci, Smart chip for visual detection of bacteria using the electrochromic properties of polyaniline, Anal. Chem., 91(23), 14960-14966 (2019). https://doi.org/10.1021/acs.analchem.9b03407
  32. D. Capoferri, R. Alvarez-Diduk, M. Del Carlo, D. Compagnone, and A. Merkoci, Electrochromic molecular imprinting sensor for visual and smartphone-based detections, Anal. Chem., 90(9), 5850-5856 (2018). https://doi.org/10.1021/acs.analchem.8b00389
  33. Z. Yu, G. Cai, X. Liu, and D. Tang, Pressure-based biosensor integrated with a flexible pressure sensor and an electrochromic device for visual detection, Anal. Chem., 93(5), 2916-2925 (2021). https://doi.org/10.1021/acs.analchem.0c04501
  34. S. E. Fosdick, K. N. Knust, K. Scida, and R. M. Crooks, Bipolar electrochemistry, Angew. Chem. Int. Ed., 52(40), 10438-10456 (2013). https://doi.org/10.1002/anie.201300947
  35. L. Bouffier, D. Manojlovic, A. Kuhn, and N. Sojic, Advances in bipolar electrochemiluminescence for the detection of biorelevant molecular targets, Curr. Opin. Electrochem., 16, 28-34 (2019). https://doi.org/10.1016/j.coelec.2019.04.004
  36. S. M. b. Fakhruddin, K. Ino, K. Y. Inoue, Y. Nashimoto, and H. Shiku, Bipolar electrode-based electrochromic devices for analytical applications - a review, Electroanalysis, 34(2), 212-226 (2022). https://doi.org/10.1002/elan.202100153
  37. W. Xu, K. Fu, and P. W. Bohn, Electrochromic sensor for multiplex detection of metabolites enabled by closed bipolar electrode coupling, ACS Sens., 2(7), 1020-1026 (2017). https://doi.org/10.1021/acssensors.7b00292
  38. Q. Zhai, X. Zhang, Y. Xia, J. Li, and E. Wang, Electrochromic sensing platform based on steric hindrance effects for CEA detection, Analyst, 141, 3985-3988 (2016). https://doi.org/10.1039/C6AN00675B
  39. X. Zhang, R. A. Lazenby, Y. Wu, and R. J. White, Electrochromic, closed-bipolar electrodes employing aptamer-based recognition for direct colorimetric sensing visualization, Anal. Chem., 91(17), 11467-11473 (2019). https://doi.org/10.1021/acs.analchem.9b03013
  40. J. Rho, S. Y. Yeon, and T. D. Chung, Sensitivity-tunable and disposable ion-sensing platform based on reverse electrodialysis, Anal. Chem., 92(13), 8776-8783 (2020). https://doi.org/10.1021/acs.analchem.0c00142
  41. A. Zloczewska, A. Celebanskaa, K. Szot, D. Tomaszewskaa, M. Opalloa, and M. JonssonNiedziolkaa, Self-powered biosensor for ascorbic acid with a Prussian blue electrochromic display, Biosens. Bioelectron., 54, 455-461 (2014). https://doi.org/10.1016/j.bios.2013.11.033
  42. X. Zhang, L. Zhang, Q. Zhai, W. Gu, J. Li, and E. Wang, Self-powered bipolar electrochromic electrode arrays for direct displaying applications, Anal. Chem., 88(5), 2543-2547 (2016). https://doi.org/10.1021/acs.analchem.6b00054
  43. M. A. Pellitero, A. Guimera, M. Kitsara, R. Villa, A. Rubio, B. Lakard, M. Doche, J. Hihn, and F. J. del Campo, Quantitative self-powered electrochromic biosensors, Chem. Sci., 8, 1995-2002 (2017). https://doi.org/10.1039/C6SC04469G
  44. E. Avendano, L. Berggren, G. A. Niklasson, C. G. Granqvist, and A. Azens, Electrochromic materials and devices: Brief survey and new data on optical absorption in tungsten oxide and nickel oxide films, Thin Solid Films, 496(1), 30-36 (2006). https://doi.org/10.1016/j.tsf.2005.08.183
  45. X. H. Xia, J.P. Tua, J. Zhang, X. L. Wang, W. K. Zhang, and H. Huang, Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition, Sol. Energy Mater. Sol. Cells, 92(6), 628-633 (2008). https://doi.org/10.1016/j.solmat.2008.01.009
  46. S. Bogati, R. Basnet, and A. Georg, Iridium oxide catalyst for hybrid electrochromic device based on tetramethylthiourea (TMTU) redox electrolyte, Sol. Energy Mater. Sol. Cells, 189, 206-213 (2019). https://doi.org/10.1016/j.solmat.2018.09.026
  47. I. Mjejri, A. Rougier, and M. Gaudon, Low-cost and facile synthesis of the vanadium oxides V2O3, VO2, and V2O5 and their magnetic, thermochromic and electrochromic properties, Inorg. Chem., 56(3), 1734-1741 (2017). https://doi.org/10.1021/acs.inorgchem.6b02880
  48. L. M. N. Assis, R. Leones, J. Kanicki, A. Pawlicka, and M. M. Silva, Prussian blue for electrochromic devices, J. Electroanal. Chem., 777, 33-39 (2016). https://doi.org/10.1016/j.jelechem.2016.05.007
  49. K. Madasamy, D. Velayutham, V. Suryanarayanan, M. Kathiresan, and K.-C. Ho, Viologen-based electrochromic materials and devices, J. Mater. Chem. C, 7, 4622-4637 (2019). https://doi.org/10.1039/C9TC00416E
  50. M. K. Ram, E. Maccioni, and C. Nicolini, The electrochromic response of polyaniline and its copolymeric systems, Thin Solid Films, 303(1-2), 27-33 (1997). https://doi.org/10.1016/S0040-6090(97)00068-0
  51. P. Camurlu, Polypyrrole derivatives for electrochromic applications, RSC Adv., 4, 55832-55845 (2014). https://doi.org/10.1039/C4RA11827H
  52. R. J. Mortimer, Electrochromic materials, Chem. Soc. Rev., 26, 147-156 (1997) https://doi.org/10.1039/cs9972600147