DOI QR코드

DOI QR Code

The Effect of Lithia Addition on the Sodium Ion Conductivity of Vapor Phase Converted Na-β"-alumina/YSZ Solid Electrolytes

  • Sasidharanpillai, Arun (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kim, Hearan (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Cho, Yebin (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kim, Dongyoung (Semiconductor R&D Center, Samsung Electronics) ;
  • Lee, Seungmi (Battery Materials Division, Research Institute of Industrial Science and Technology (RIST)) ;
  • Jung, Keeyoung (Battery Materials Division, Research Institute of Industrial Science and Technology (RIST)) ;
  • Lee, Younki (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
  • Received : 2022.11.23
  • Accepted : 2022.11.24
  • Published : 2022.11.30

Abstract

Na-β"-Al2O3 has been widely employed as a solid electrolyte for high-temperature sodium (Na) beta-alumina batteries (NBBs) thanks to its superb thermal stability and high ionic conductivity. Recently, a vapor phase conversion (VPC) method has been newly introduced to fabricate thin Na-β"-Al2O3 electrolytes by converting α-Al2O3 into β"-Al2O3 in α-Al2O3/yttria-stabilized zirconia (YSZ) composites under Na+ and O2- dual percolation environments. One of the main challenges that need to be figured out is lowered conductivity due to the large volume fraction of the non-Na+-conducting YSZ. In this study, the effect of lithia addition in the β"-Al2O3 phase on the grain size and ionic conductivity of Na-β"-Al2O3/YSZ solid electrolytes have been investigated in order to enhance the conductivity of the electrolyte. The amount of pre-added lithia (Li2O) precursor as a phase stabilizer was varied at 0, 1, 2, 3, and 4 mol% against that of Al2O3. It turns out that ionic conductivity increases even with 1 mol% lithia addition and reaches 67 mS cm-1 at 350 ℃ of its maximum with 3 mol%, which is two times higher than that of the undoped composite.

Keywords

Acknowledgement

This work is supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education through the Basic Science Research Program (NRF-2020R1A6A1A03038697) and Korea Institute for Advancement of Technology (KIAT) funded by the Ministry of Trade, Industry and Energy (MOTIE) through the International Cooperative R&D Program (P0018443, 2021).

References

  1. A. V. Virkar, G. R. Miller, and R. S. Gordon, Resistivitymicrostructure relations in lithia-stabilized polycrystalline β"-alumina, J. Am. Ceram. Soc., 61(5-6), 250-252 (1978). https://doi.org/10.1111/j.1151-2916.1978.tb09292.x
  2. T. Oshima, M. Kajita, and A. Okuno, Development of sodium-sulfur batteries, Int. J. Appl. Ceram. Technol., 1(3), 269-276 (2004).
  3. K. Jung, S. Lee, and G. Kim, Stress Analyses of the glass joints of contemporary sodium sulfur batteries, J. Power Sources, 269, 773-782 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.071
  4. J. L. Sudworth, The sodium/nickel chloride (ZEBRA) battery, J. Power Sources, 100(1-2), 149-163 (2001). https://doi.org/10.1016/S0378-7753(01)00891-6
  5. T .C. Girija and A. V. Virkar, Low temperature electrochemical cells with sodium β"-alumina solid electrolyte (BASE), J. Power Sources, 180(1), 653-656 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.009
  6. C. A. Beevers and M. A. S. Ross, The crystal structure of "beta alumina" Na2O·11Al2O3, Zeitschrift fur Krist. - Cryst. Mater., 97, 59-66 (1937). https://doi.org/10.1524/zkri.1937.97.1.59
  7. Y. Wang. D. Zhou, V. Palomares, D. Shanmukaraj, B. Sun, X. Tang, C. Wang, M. Armand, T. Rojo, and G. Wang, Revitalising sodium-sulfur batteries for non-hightemperature operation: A crucial review, Energy Environ. Sci., 13, 3848-3879 (2020). https://doi.org/10.1039/D0EE02203A
  8. M. P. Fertig, K. Skadell, M. Schulz, C. Dirksen, P. Adelhelm, and M. Stelter, From high- to low-temperature: The revival of sodium-beta alumina for sodium solidstate batteries, Batter. Supercaps, 5(1), e202100131 (2021).
  9. M. C. Bay, M. V. F. Heinz, R. Figi, C. Schreiner, D. Basso, N. Zanon, U. F. Vogt, and C. Battaglia, Impact of liquid phase formation on microstructure and conductivity of Li-stabilized Na- β"-alumina ceramics, ACS Appl. Energy Mater., 2(1), 687-693 (2019). https://doi.org/10.1021/acsaem.8b01715
  10. A. I. Agustina, K. Skadell, C. L. Dirksen, M. Schulz, and S. P. Kusumocahyo, Sol-gel method for synthesis of Li+ - stabilized Na-β"-alumina for solid electrolytes in sodiumbased batteries, AIP Conf. Proc., 2175, 020070 (2019).
  11. H. Li, H. Fan, H. B. Wang, C. Wang, M. Zhang, G. Chen, X. Jiang, N. Zhao, J. Lu, and J. Zhang, Mechanical and electrical properties of lithium stabilized sodium beta alumina solid electrolyte shaping by non-aqueous gelcasting J. Eur. Ceram. Soc., 40(8), 3072-3079 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.02.037
  12. K. Li, M. Ma, Y. Yang, S. Liang, and X. Zhang, Preparation of β"-Al2O3 electrolytes by freeze-drying and SPS, Ceram. Int., 47(11), 15017-15022 (2021). https://doi.org/10.1016/j.ceramint.2021.02.057
  13. M. C. Bay, M. V. F. Heinz, A. N. Danilewsky, C. Battaglia, and U. F. Vogt, Analysis of C-lattice parameters to evaluate Na2O loss from and Na2O content in β"-alumina ceramics, Ceram. Int., 47(10), 13402-13408 (2021). https://doi.org/10.1016/j.ceramint.2021.01.197
  14. L. Ghadbeigi, A. Szendrei, P. Moreno, T. D. Sparks, and A. V. Virkar, Synthesis of iron-doped Na-β"-alumina + yttria-stabilized zirconia composite electrolytes by a vapor phase process, Solid State Ion., 290, 77-82 (2016). https://doi.org/10.1016/j.ssi.2016.04.006
  15. P. Parthasarathy and A. V. Virkar, Vapor phase conversion of α-alumina + zirconia composites into sodium ion conducting Na-β"-alumina + zirconia solid electrolytes, J. Electrochem. Soc., 160, A2268-A2280 (2013). https://doi.org/10.1149/2.095311jes
  16. L. Ghadbeigi, T. D. Sparks, and A. V. Virkar, Electrochemical studies on Na-β"-alumina + yttria-stabilized zirconia (YSZ) composite mixed Na+-ion - O2--ion conductors, J. Electrochem. Soc., 166, F679-F686 (2019). https://doi.org/10.1149/2.0161912jes
  17. N.L. Canfield, J. Y. Kim, J.F. Bonnett, R.L. Pearson III, V.L. Sprenkle, K.Jung. Effects of fabrication conditions on mechanical properties and microstructure of duplex β"-Al2O3 solid electrolyte., Mater. Sci. Eng. B, 197, 43-50 (2015). https://doi.org/10.1016/j.mseb.2015.03.009
  18. M. J. Sanchez-Rivera, M. J. Orts, V. Perez-Herranz, and S. Mestre, Study of lithium carbonate as sintering aid for tin oxide densification trough experimental designs: Main variables and microstructure changes, Boletin la Soc. Espanola Ceramica y Vidr., in press, (2022).
  19. S. M. Jamil, M. H. D. Othman, M. A. Rahman, J. Jaafar, A. F. Ismail, and M. A. Mohamed, Role of lithium oxide as a sintering aid for a CGO electrolyte fabricated via a phase inversion technique, RSC Adv., 5, 58154-58162 (2015). https://doi.org/10.1039/C5RA09268J
  20. T. D. Sparks and L. Ghadbeigi, Anisotropic properties of Na- β"-alumina + YSZ composite synthesized by vapor phase method, J. Mater. Res., 33, 81-89 (2018). https://doi.org/10.1557/jmr.2017.436
  21. R. H. J. Hannink, P. M. Kelly, and B. C. Muddle, Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc., 83(3), 461-487 (2000).
  22. Y. H. Kim, D. H. Lee, D. G. Lee, K. Jung, and S. K. Lim, Analysis of process parameters affecting the crystal orientation of Na+ - β"-Al2O3 solid electrolyte in one-step synthesis cum sintering process, Mater. Res. Bull., 145, 111524 (2022). https://doi.org/10.1016/j.materresbull.2021.111524
  23. F. K. Lotgering, Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures - I, J. Inorg. Nucl. Chem., 9(2), 113-123(1959). https://doi.org/10.1016/0022-1902(59)80070-1
  24. S. Liang, Y. Yang, K. Li, and X. Zhang, A study on the preparation of oriented Beta"-alumina ceramics using rod/flake-like boehmite as precursors and their properties, J. Eur. Ceram. Soc., 40(12), 4047-4055 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.04.027
  25. Y. Mordekovitz, L. Shelly, M. Halabi, S. Kalabukhov, and S. Hayun, The effect of lithium doping on the sintering and grain growth of SPS-processed, non-stoichiometric magnesium aluminate spinel, Materials, 9(6), 481 (2016). https://doi.org/10.3390/ma9060481
  26. L. Zhu and A. V. Virkar, Conversion kinetics and ionic conductivity in Na-β"-Alumina + YSZ (Naβ"AY) sodium solid electrolyte via vapor phase conversion process, Membr., 12(6), 567 (2022). https://doi.org/10.3390/membranes12060567
  27. D. H. Lee, S. S. Han, Y. H. Kim, and S. K. Lim, Analysis of crystal phases of Na+-β/β"-alumina/YSZ composite prepared by vapor-phase synthesis from YSZ-toughened α-alumina, J. Ind. Eng. Chem., 76, 366-373 (2019). https://doi.org/10.1016/j.jiec.2019.04.002
  28. C. Schmid, X-ray characterization of β and β"-alumina, J. Mater. Sci. Lett., 5(3), 263-266 (1986). https://doi.org/10.1007/BF01748072
  29. S. T. Lee, S. G. Kim, M. H. Jang, S. H. Hwang, J. R. Haw, and S. K. Lim, Effect of phase stabilizers on the phase formation and sintering density of Na+-beta-alumina solid electrolyte, J. Ceram. Process. Res., 11(1), 86-91 (2010).