Acknowledgement
이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(No.2017-0-00217, 투명도와 레이어 가변형 실감 사이니지 기술 연구).
References
- T. Karras, S. Laine, and T. Aila, "A style-based generator architecture for generative adversarial networks," Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June, 2019. https://doi.org/10.1109/CVPR.2019.00453.
- T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, "Analyzing and improving the image quality of stylegan," Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020. https://doi.org/10.1109/CVPR42600.2020.00813m.
- M. J. Chong, "GANs N' roses: Stable, controllable, diverse image to image translation," Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2021.
- L. Tran and X. Liu, "On learning 3D face morphable model from in-the-wild images," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.43, No.1, pp.157-171, 2021. https://doi.org/10.1109/TPAMI.2019.2927975.
- T. C. Wang et al., "Video-to-video synthesis," Advances in Neural Information Processing Systems, 2018-December, 2018.
- A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Niessner, "FaceForensics++: Learning to detect manipulated facial images," Proceedings of the IEEE International Conference on Computer Vision, 2019-October, 2019. https://doi.org/10.1109/ICCV.2019.00009.
- M. R. Koujan, M. C. Doukas, A. Roussos, and S. Zafeiriou, "Head2Head: Video-based neural head synthesis," Proceedings - 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2020, 2020. https://doi.org/10.1109/FG47880.2020.00048.
- M. C. Doukas, M. R. Koujan, V. Sharmanska, A. Roussos, and S. Zafeiriou, "Head2Head++: Deep facial attributes re-targeting," arXiv e-prints arXiv: 2006.10199, 2020.
- MetFace dataset [Internet], https://github.com/NVlabs/metfaces-dataset.
- R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, "The unreasonable effectiveness of deep features as a perceptual metric," Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2018. https://doi.org/10.1109/CVPR.2018.00068.
- D. Bank, N, Koenigstein, and R. Giryes, "Autoencoder," arXiv preprint arXiv:2003.05991. 2020.
- D. P. Kingma and M. Welling, "Auto-encoding variational bayes," 2nd International Conference on Learning Representations, ICLR 2014 - Conference Track Proceedings, 2014.
- I. J. Goodfellow et al., "Generative adversarial nets," Advances in Neural Information Processing Systems, 3(Jan.), 2014. https://doi.org/10.3156/jsoft.29.5_177_2.
- A. Radford, L. Metz, and S. Chintala, "Unsupervised representation learning with deep convolutional GANs," International Conference on Learning Representations, 2016.
- X. Huang and S. Belongie, "Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization," Proceedings of the IEEE International Conference on Computer Vision, 2017. https://doi.org/10.1109/ICCV.2017.167.
- X. Han, L. Zhang, K. Zhou, and X. Wang, "ProGAN: Protein solubility generative adversarial nets for data augmentation in DNN framework," Computers and Chemical Engineering, Vol.131, 2019. https://doi.org/10.1016/j.compchemeng.2019.106533.
- M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, "Stochastic variational inference," Journal of Machine Learning Research, Vol.14, 2013. https://doi.org/10.1184/R1/6475463.V1.
- N.-A. Lahonce, Flickr-Faces-HQ Dataset (FFHQ), Nvidia, 2020.
- Z. Zhang and M. R. Sabuncu, "Generalized cross entropy loss for training deep neural networks with noisy labels," Advances in Neural Information Processing Systems, Vol.31, 2018.
- D. A. Pisner and D. M. Schnyer, "Support vector machine," In Machine Learning: Methods and Applications to Brain Disorders, 2019. https://doi.org/10.1016/B978-0-12-815739-8.00006-7.
- A. Mathiasen and F. Hvilshoj, "Fast frechet inception distance," arXiv preprint arXiv:2009.14075, 2020.
- O. Nizan and A. Tal, "Breaking the cycle-colleagues are all you need," Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020. https://doi.org/10.1109/CVPR42600.2020.00788.
- P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros, "Pix2Pix," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
- J. Y. Zhu, T. Park, P. Isola, and A. A. Efros, "Unpaired image-to-image translation using cycle-consistent adversarial networks," arXiv preprint arXiv:1703.10593, 2017.
- J. Han, J. Tao, and C. Wang, "FlowNet: A deep learning framework for clustering and selection of streamlines and stream surfaces," in IEEE Transactions on Visualization and Computer Graphics, Vol.26, No.4, pp.1732-1744, 2020, doi: 10.1109/TVCG.2018.2880207.
- E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, "FlowNet 2.0: Evolution of optical flow estimation with deep networks," Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017. https://doi.org/10.1109/CVPR.2017.179.
- L. Yuan, C. Ruan, H. Hu, and D. Chen, "Image inpainting based on Patch-GANs," in IEEE Access, Vol.7, pp.46411- 46421, 2019, doi: 10.1109/ACCESS.2019.2909553.
- X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley, "LSGAN," Proceedings of the IEEE International Conference on Computer Vision, 2017.
- K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, "MTCNN," IEEE Signal Processing Letters, Vol.23, No.10, 2016.
- H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas, "Normalized object coordinate space for category-level 6D object pose and size estimation," Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019. https://doi.org/10.1109/CVPR.2019.00275.
- B. J. B. Rani and L. M. E. Sumathi, "Survey on applying GAN for anomaly detection." 2020 International Conference on Computer Communication and Informatics (ICCCI), 2020. https://doi.org/10.1109/ICCCI48352.2020.9104046
- J. Johnson, A. Alahi, and L. Fei-Fei, "Perceptual losses for real-time style transfer and super-resolution." Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9906 LNCS, 2016. https://doi.org/10.1007/978-3-319-46475-6_43.
- H. Y. Lee et al., "DRIT++: Diverse Image-to-Image Translation via Disentangled Representations," arXiv preprint arXiv:1905.01270, 2019.
- E. Harkonen, A. Hertzmann, J. Lehtinen, and S. Paris, "GANSpace: Discovering interpretable GAN controls," Advances in Neural Information Processing Systems, Vol.33, pp.9841-9850, 2020.
- X. Zhu, X. Liu, Z. Lei, and S. Z. Li, "Face alignment in full pose range: A 3D total solution," arXiv preprint arXiv: 1804.01005, 2018.
- J. H. Lee, M. J. Sung, J. W. Kang, and D. Chen, "Learning dense representa tions of phrases at scale," arXiv preprint arXiv:2012.12624, 2020.