DOI QR코드

DOI QR Code

α-Synuclein Disrupts Vesicle Fusion by Two Mutant-Specific Mechanisms

  • Yoo, Gyeongji (Department of Chemistry, Seoul National University) ;
  • An, Hyeong Jeon (Department of Physics, Pohang University of Science and Technology) ;
  • Yeou, Sanghun (Department of Chemistry, Seoul National University) ;
  • Lee, Nam Ki (Department of Chemistry, Seoul National University)
  • Received : 2022.06.23
  • Accepted : 2022.07.28
  • Published : 2022.11.30

Abstract

Synaptic accumulation of α-synuclein (α-Syn) oligomers and their interactions with VAMP2 have been reported to be the basis of synaptic dysfunction in Parkinson's disease (PD). α-Syn mutants associated with familial PD have also been known to be capable of interacting with VAMP2, but the exact mechanisms resulting from those interactions to eventual synaptic dysfunction are still unclear. Here, we investigate the effect of α-Syn mutant oligomers comprising A30P, E46K, and A53T on VAMP2-embedded vesicles. Specifically, A30P and A53T oligomers cluster vesicles in the presence of VAMP2, which is a shared mechanism with wild type α-Syn oligomers induced by dopamine. On the other hand, E46K oligomers reduce the membrane mobility of the planar bilayers, as revealed by single-particle tracking, and permeabilize the membranes in the presence of VAMP2. In the absence of VAMP2 interactions, E46K oligomers enlarge vesicles by fusing with one another. Our results clearly demonstrate that α-Syn mutant oligomers have aberrant effects on VAMP2-embedded vesicles and the disruption types are distinct depending on the mutant types. This work may provide one of the possible clues to explain the α-Syn mutant-type dependent pathological heterogeneity of familial PD.

Keywords

Acknowledgement

This work was supported by the Creative-Pioneering Researchers Program of Seoul National University, NRF-2019R1A2C2090896, and NRF-2020R1A5A1019141 of the National Research Foundation of Korea.

References

  1. Agliardi, C., Meloni, M., Guerini, F.R., Zanzottera, M., Bolognesi, E., Baglio, F., and Clerici, M. (2021). Oligomeric α-Syn and SNARE complex proteins in peripheral extracellular vesicles of neural origin are biomarkers for Parkinson's disease. Neurobiol. Dis. 148, 105185. https://doi.org/10.1016/j.nbd.2020.105185
  2. Alam, P., Bousset, L., Melki, R., and Otzen, D.E. (2019). alpha-synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities. J. Neurochem. 150, 522-534. https://doi.org/10.1111/jnc.14808
  3. Bodner, C.R., Dobson, C.M., and Bax, A. (2009). Multiple tight phospholipid-binding modes of α-synuclein revealed by solution NMR spectroscopy. J. Mol. Biol. 390, 775-790. https://doi.org/10.1016/j.jmb.2009.05.066
  4. Burre, J., Sharma, M., and Sudhof, T.C. (2012). Systematic mutagenesis of alpha-synuclein reveals distinct sequence requirements for physiological and pathological activities. J. Neurosci. 32, 15227-15242. https://doi.org/10.1523/JNEUROSCI.3545-12.2012
  5. Burre, J., Sharma, M., and Sudhof, T.C. (2014). alpha-Synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. Proc. Natl. Acad. Sci. U. S. A. 111, E4274-E4283.
  6. Burre, J., Sharma, M., Tsetsenis, T., Buchman, V., Etherton, M.R., and Sudhof, T.C. (2010). alpha-Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329, 1663-1667. https://doi.org/10.1126/science.1195227
  7. Cho, Y., An, H.J., Kim, T., Lee, C., and Lee, N.K. (2021). Mechanism of Cyanine5 to Cyanine3 photoconversion and its application for highdensity single-particle tracking in a living cell. J. Am. Chem. Soc. 143, 14125-14135. https://doi.org/10.1021/jacs.1c04178
  8. Choi, B.K., Choi, M.G., Kim, J.Y., Yang, Y., Lai, Y., Kweon, D.H., Lee, N.K., and Shin, Y.K. (2013). Large alpha-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. Proc. Natl. Acad. Sci. U. S. A. 110, 4087-4092. https://doi.org/10.1073/pnas.1218424110
  9. Choi, M.G., Kim, M.J., Kim, D.G., Yu, R., Jang, Y.N., and Oh, W.J. (2018). Sequestration of synaptic proteins by alpha-synuclein aggregates leading to neurotoxicity is inhibited by small peptide. PLoS One 13, e0195339. https://doi.org/10.1371/journal.pone.0195339
  10. Conway, K.A., Harper, J.D., and Lansbury, P.T. (1998). Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat. Med. 4, 1318-1320. https://doi.org/10.1038/3311
  11. Conway, K.A., Lee, S.J., Rochet, J.C., Ding, T.T., Williamson, R.E., and Lansbury, P.T. (2000). Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. U. S. A. 97, 571-576. https://doi.org/10.1073/pnas.97.2.571
  12. Conway, K.A., Rochet, J.C., Bieganski, R.M., and Lansbury, P.T. (2001). Kinetic stabilization of the alpha-synuclein protofibril by a dopaminealpha-synuclein adduct. Science 294, 1346-1349. https://doi.org/10.1126/science.1063522
  13. Danzer, K.M., Haasen, D., Karow, A.R., Moussaud, S., Habeck, M., Giese, A., Kretzschmar, H., Hengerer, B., and Kostka, M. (2007). Different species of alpha-synuclein oligomers induce calcium influx and seeding. J. Neurosci. 27, 9220-9232. https://doi.org/10.1523/JNEUROSCI.2617-07.2007
  14. Davidson, W.S., Jonas, A., Clayton, D.F., and George, J.M. (1998). Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 273, 9443-9449. https://doi.org/10.1074/jbc.273.16.9443
  15. Dettmer, U., Ramalingam, N., von Saucken, V.E., Kim, T.E., Newman, A.J., Terry-Kantor, E., Nuber, S., Ericsson, M., Fanning, S., Bartels, T., et al. (2017). Loss of native alpha-synuclein multimerization by strategically mutating its amphipathic helix causes abnormal vesicle interactions in neuronal cells. Hum. Mol. Genet. 26, 3466-3481. https://doi.org/10.1093/hmg/ddx227
  16. Dettmer, U., Selkoe, D., and Bartels, T. (2016). New insights into cellular α-synuclein homeostasis in health and disease. Curr. Opin. Neurobiol. 36, 15-22. https://doi.org/10.1016/j.conb.2015.07.007
  17. DeWitt, D.C. and Rhoades, E. (2013). alpha-Synuclein can inhibit SNAREmediated vesicle fusion through direct interactions with lipid bilayers. Biochemistry 52, 2385-2387. https://doi.org/10.1021/bi4002369
  18. Diao, J.J., Burre, J., Vivona, S., Cipriano, D.J., Sharma, M., Kyoung, M., Sudhof, T.C., and Brunger, A.T. (2013). Native alpha-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2. Elife 2, e00592. https://doi.org/10.7554/eLife.00592
  19. Eliezer, D. (2009). Biophysical characterization of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 19, 23-30. https://doi.org/10.1016/j.sbi.2008.12.004
  20. Eliezer, D., Kutluay, E., Bussell, R., and Browne, G. (2001). Conformational properties of alpha-synuclein in its free and lipid-associated states. J. Mol. Biol. 307, 1061-1073. https://doi.org/10.1006/jmbi.2001.4538
  21. Fanning, S., Selkoe, D., and Dettmer, U. (2020). Parkinson's disease: proteinopathy or lipidopathy? NPJ Parkinsons Dis. 6, 3. https://doi.org/10.1038/s41531-019-0103-7
  22. Fuchs, J., Nilsson, C., Kachergus, J., Munz, M., Larsson, E.M., Schule, B., Langston, J., Middleton, F., Ross, O.A., Hulihan, M., et al. (2007). Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology 68, 916-922. https://doi.org/10.1212/01.wnl.0000254458.17630.c5
  23. Furukawa, K., Matsuzaki-Kobayashi, M., Hasegawa, T., Kikuchi, A., Sugeno, N., Itoyama, Y., Wang, Y., Yao, P.J., Bushlin, I., and Takeda, A. (2006). Plasma membrane ion permeability induced by mutant alpha-synuclein contributes to the degeneration of neural cells. J. Neurochem. 97, 1071-1077. https://doi.org/10.1111/j.1471-4159.2006.03803.x
  24. Fusco, G., Chen, S.W., Williamson, P.T.F., Cascella, R., Perni, M., Jarvis, J.A., Cecchi, C., Vendruscolo, M., Chiti, F., Cremades, N., et al. (2017). Structural basis of membrane disruption and cellular toxicity by alpha-synuclein oligomers. Science 358, 1440-1443. https://doi.org/10.1126/science.aan6160
  25. Fusco, G., Pape, T., Stephens, A.D., Mahou, P., Costa, A.R., Kaminski, C.F., Schierle, G.S.K., Vendruscolo, M., Veglia, G., Dobson, C.M., et al. (2016). Structural basis of synaptic vesicle assembly promoted by alpha-synuclein. Nat. Commun. 7, 12563. https://doi.org/10.1038/ncomms12563
  26. Giannakis, E., Pacifico, J., Smith, D.P., Hung, L.W., Masters, C.L., Cappai, R., Wade, J.D., and Barnham, K.J. (2008). Dimeric structures of α-synuclein bind preferentially to lipid membranes. Biochim. Biophys. Acta 1778, 1112-1119. https://doi.org/10.1016/j.bbamem.2008.01.012
  27. Goedert, M. (2001). Alpha-synuclein and neurodegenerative diseases. Nat. Rev. Neurosci. 2, 492-501. https://doi.org/10.1038/35081564
  28. Heo, P. and Pincet, F. (2020). Freezing and piercing of in vitro asymmetric plasma membrane by α-synuclein. Commun. Biol. 3, 148. https://doi.org/10.1038/s42003-020-0883-7
  29. Iwai, A., Masliah, E., Yoshimoto, M., Ge, N., Flanagan, L., De Silva, H.A.R., Kittel, A., and Saitoh, T. (1995). The precursor protein of non-Aβ component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. Neuron 14, 467-475. https://doi.org/10.1016/0896-6273(95)90302-X
  30. Jackman, J.A. and Cho, N.J. (2020). Supported lipid bilayer formation: beyond vesicle fusion. Langmuir 36, 1387-1400. https://doi.org/10.1021/acs.langmuir.9b03706
  31. Jacobson, K., Liu, P., and Lagerholm, B.C. (2019). The lateral organization and mobility of plasma membrane components. Cell 177, 806-819. https://doi.org/10.1016/j.cell.2019.04.018
  32. Jaqaman, K., Loerke, D., Mettlen, M., Kuwata, H., Grinstein, S., Schmid, S.L., and Danuser, G. (2008). Robust single-particle tracking in live-cell timelapse sequences. Nat. Methods 5, 695-702. https://doi.org/10.1038/nmeth.1237
  33. Jo, E.J., McLaurin, J., Yip, C.M., St George-Hyslop, P., and Fraser, P.E. (2000). alpha-synuclein membrane interactions and lipid specificity. J. Biol. Chem. 275, 34328-34334. https://doi.org/10.1074/jbc.M004345200
  34. Kim, D.H., Zhou, K., Kim, D.K., Park, S., Noh, J., Kwon, Y., Kim, D., Song, N.W., Lee, J.B., Suh, P.G., et al. (2015). Analysis of interactions between the epidermal growth factor receptor and soluble ligands on the basis of single-molecule diffusivity in the membrane of living cells. Angew. Chem. Int. Ed. Engl. 54, 7028-7032. https://doi.org/10.1002/anie.201500871
  35. Kim, H.Y., Cho, M.K., Kumar, A., Maier, E., Siebenhaar, C., Becker, S., Fernandez, C.O., Lashuel, H.A., Benz, R., Lange, A., et al. (2009). Structural properties of pore-forming oligomers of α-synuclein. J. Am. Chem. Soc. 131, 17482-17489. https://doi.org/10.1021/ja9077599
  36. Kim, J.Y., Choi, B.K., Choi, M.G., Kim, S.A., Lai, Y., Shin, Y.K., and Lee, N.K. (2012). Solution single-vesicle assay reveals PIP2-mediated sequential actions of synaptotagmin-1 on SNAREs. EMBO J. 31, 2144-2155. https://doi.org/10.1038/emboj.2012.57
  37. Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., Przuntek, H., Epplen, J.T., Schols, L., and Riess, O. (1998). Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat. Genet. 18, 106-108. https://doi.org/10.1038/ng0298-106
  38. Kumar, S.T., Donzelli, S., Chiki, A., Syed, M.M.K., and Lashuel, H.A. (2020). A simple, versatile and robust centrifugation-based filtration protocol for the isolation and quantification of alpha-synuclein monomers, oligomers and fibrils: towards improving experimental reproducibility in alphasynuclein research. J. Neurochem. 153, 103-119. https://doi.org/10.1111/jnc.14955
  39. Lashuel, H.A., Petre, B.M., Wall, J., Simon, M., Nowak, R.J., Walz, T., and Lansbury, P.T. (2002). alpha-synuclein, especially the Parkinson's diseaseassociated mutants, forms pore-like annular and tubular protofibrils. J. Mol. Biol. 322, 1089-1102. https://doi.org/10.1016/S0022-2836(02)00735-0
  40. Lee, Y., Kim, J., Kim, H., Han, J.E., Kim, S., Kang, K.H., Kim, D., Kim, J.M., and Koh, H. (2022). Pyruvate dehydrogenase kinase protects dopaminergic neurons from oxidative stress in Drosophila DJ-1 null mutants. Mol. Cells 45, 454-464. https://doi.org/10.14348/molcells.2022.5002
  41. Li, J., Uversky, V.N., and Fink, A.L. (2001). Effect of familial Parkinson's disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human alpha-synuclein. Biochemistry 40, 11604-11613. https://doi.org/10.1021/bi010616g
  42. Lou, X.C., Kim, J., Hawk, B.J., and Shin, Y.K. (2017). alpha-Synuclein may cross-bridge v-SNARE and acidic phospholipids to facilitate SNAREdependent vesicle docking. Biochem. J. 474, 2039-2049. https://doi.org/10.1042/BCJ20170200
  43. Maroteaux, L., Campanelli, J.T., and Scheller, R.H. (1988). Synuclein - a neuron-specific protein localized to the nucleus and presynaptic nerveterminal. J. Neurosci. 8, 2804-2815. https://doi.org/10.1523/JNEUROSCI.08-08-02804.1988
  44. McCormack, A., Keating, D.J., Chegeni, N., Colella, A., Wang, J.J., and Chataway, T. (2019). Abundance of synaptic vesicle-related proteins in alpha-synuclein-containing protein inclusions suggests a targeted formation mechanism. Neurotox. Res. 35, 883-897. https://doi.org/10.1007/s12640-019-00014-0
  45. Murphy, D.D., Rueter, S.M., Trojanowski, J.Q., and Lee, V.M.Y. (2000). Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J. Neurosci. 20, 3214-3220. https://doi.org/10.1523/JNEUROSCI.20-09-03214.2000
  46. Musteikyte, G., Jayaram, A.K., Xu, C.K., Vendruscolo, M., Krainer, G., and Knowles, T.P.J. (2021). Interactions of α-synuclein oligomers with lipid membranes. Biochim. Biophys. Acta Biomembr. 1863, 183536. https://doi.org/10.1016/j.bbamem.2020.183536
  47. Narayanan, V. and Scarlata, S. (2001). Membrane binding and selfassociation of alpha-synucleins. Biochemistry 40, 9927-9934. https://doi.org/10.1021/bi002952n
  48. Petrucci, S., Ginevrino, M., and Valente, E.M. (2016). Phenotypic spectrum of alpha-synuclein mutations: new insights from patients and cellular models. Parkinsonism Relat. Disord. 22 Suppl 1, S16-S20. https://doi.org/10.1016/j.parkreldis.2015.08.015
  49. Pieri, L., Madiona, K., and Melki, R. (2016). Structural and functional properties of prefibrillar alpha-synuclein oligomers. Sci. Rep. 6, 24526. https://doi.org/10.1038/srep24526
  50. Polymeropoulos, M.H., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276, 2045-2047. https://doi.org/10.1126/science.276.5321.2045
  51. Reynolds, N.P., Soragni, A., Rabe, M., Verdes, D., Liverani, E., Handschin, S., Riek, R., and Seeger, S. (2011). Mechanism of membrane interaction and disruption by α-synuclein. J. Am. Chem. Soc. 133, 19366-19375. https://doi.org/10.1021/ja2029848
  52. Richter, R.P., Berat, R., and Brisson, A.R. (2006). Formation of solidsupported lipid bilayers: an integrated view. Langmuir 22, 3497-3505. https://doi.org/10.1021/la052687c
  53. Robotta, M., Cattani, J., Martins, J.C., Subramaniam, V., and Drescher, M. (2017). Alpha-synuclein disease mutations are structurally defective and locally affect membrane binding. J. Am. Chem. Soc. 139, 4254-4257. https://doi.org/10.1021/jacs.6b05335
  54. Ross, C.A. and Poirier, M.A. (2004). Protein aggregation and neurodegenerative disease. Nat. Med. 10 Suppl, S10-S17. https://doi.org/10.1038/nm1066
  55. Rovere, M., Powers, A.E., Jiang, H.Y., Pitino, J.C., Fonseca-Ornelas, L., Patel, D.S., Achille, A., Langen, R., Varkey, J., and Bartels, T. (2019). E46K-like α-synuclein mutants increase lipid interactions and disrupt membrane selectivity. J. Biol. Chem. 294, 9799-9812. https://doi.org/10.1074/jbc.RA118.006551
  56. Selvaraj, S. and Piramanayagam, S. (2019). Impact of gene mutation in the development of Parkinson's disease. Genes Dis. 6, 120-128. https://doi.org/10.1016/j.gendis.2019.01.004
  57. Spillantini, M.G., Crowther, R.A., Jakes, R., Hasegawa, M., and Goedert, M. (1998). alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. U. S. A. 95, 6469-6473. https://doi.org/10.1073/pnas.95.11.6469
  58. Spillantini, M.G., Schmidt, M.L., Lee, V.M.Y., Trojanowski, J.Q., Jakes, R., and Goedert, M. (1997). alpha-synuclein in Lewy bodies. Nature 388, 839-840. https://doi.org/10.1038/42166
  59. Stckl, M.T., Zijlstra, N., and Subramaniam, V. (2013). alpha-Synuclein oligomers: an amyloid pore? Insights into mechanisms of α-synuclein oligomer-lipid interactions. Mol. Neurobiol. 47, 613-621. https://doi.org/10.1007/s12035-012-8331-4
  60. Stefanovic, A.N.D., Lindhoud, S., Semerdzhiev, S.A., Claessens, M., and Subramanian, V. (2015). Oligomers of Parkinson's disease-related alphasynuclein mutants have similar structures but distinctive membrane permeabilization properties. Biochemistry 54, 3142-3150. https://doi.org/10.1021/bi501369k
  61. Sun, J.C., Wang, L.N., Bao, H., Premi, S., Das, U., Chapman, E.R., and Roy, S. (2019). Functional cooperation of alpha-synuclein and VAMP2 in synaptic vesicle recycling. Proc. Natl. Acad. Sci. U. S. A. 116, 11113-11115. https://doi.org/10.1073/pnas.1903049116
  62. Tanaka, G., Yamanaka, T., Furukawa, Y., Kajimura, N., Mitsuoka, K., and Nukina, N. (2019). Biochemical and morphological classification of disease-associated alpha-synuclein mutants aggregates. Biochem. Biophys. Res. Commun. 508, 729-734. https://doi.org/10.1016/j.bbrc.2018.11.200
  63. Tsigelny, I.F., Sharikov, Y., Wrasidlo, W., Gonzalez, T., Desplats, P.A., Crews, L., Spencer, B., and Masliah, E. (2012). Role of alpha-synuclein penetration into the membrane in the mechanisms of oligomer pore formation. FEBS J. 279, 1000-1013. https://doi.org/10.1111/j.1742-4658.2012.08489.x
  64. van Meer, G., Voelker, D.R., and Feigenson, G.W. (2008). Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112-124. https://doi.org/10.1038/nrm2330
  65. Volles, M.J. and Lansbury, P.T. (2002). Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson's disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41, 4595-4602. https://doi.org/10.1021/bi0121353
  66. Volles, M.J., Lee, S.J., Rochet, J.C., Shtilerman, M.D., Ding, T.T., Kessler, J.C., and Lansbury, P.T. (2001). Vesicle permeabilization by protofibrillar alphasynuclein: implications for the pathogenesis and treatment of Parkinson's disease. Biochemistry 40, 7812-7819. https://doi.org/10.1021/bi0102398
  67. Wakabayashi, K., Matsumoto, K., Takayama, K., Yoshimoto, M., and Takahashi, H. (1997). NACP, a presynaptic protein, immunoreactivity in Lewy bodies in Parkinson's disease. Neurosci. Lett. 239, 45-48. https://doi.org/10.1016/S0304-3940(97)00891-4
  68. Wang, L.N., Das, U., Scott, D.A., Tang, Y., McLean, P.J., and Roy, S. (2014). alpha-Synuclein multimers cluster synaptic vesicles and attenuate recycling. Curr. Biol. 24, 2319-2326. https://doi.org/10.1016/j.cub.2014.08.027
  69. Wang, W. (2005). Protein aggregation and its inhibition in biopharmaceutics. Int. J. Pharm. 289, 1-30. https://doi.org/10.1016/j.ijpharm.2004.11.014
  70. Wang, W., Nema, S., and Teagarden, D. (2010). Protein aggregation-pathways and influencing factors. Int. J. Pharm. 390, 89-99. https://doi.org/10.1016/j.ijpharm.2010.02.025
  71. Yeou, S. and Lee, N.K. (2022). Single-molecule methods for investigating the double-stranded DNA bendability. Mol. Cells 45, 33-40. https://doi.org/10.14348/molcells.2021.0182
  72. Yoo, G., Shin, Y.K., and Lee, N.K. (2022). The role of α-synuclein in SNAREmediated synaptic vesicle fusion. J. Mol. Biol. 2022 Aug 3 [Epub]. https://doi.org/10.1016/j.jmb.2022.167775
  73. Yoo, G., Yeou, S., Son, J.B., Shin, Y.K., and Lee, N.K. (2021). Cooperative inhibition of SNARE-mediated vesicle fusion by α-synuclein monomers and oligomers. Sci. Rep. 11, 10955. https://doi.org/10.1038/s41598-021-90503-0
  74. Zakharov, S.D., Hulleman, J.D., Dutseva, E.A., Antonenko, Y.N., Rochet, J.C., and Cramer, W.A. (2007). Helical alpha-synuclein forms highly conductive ion channels. Biochemistry 46, 14369-14379. https://doi.org/10.1021/bi701275p
  75. Zarranz, J.J., Alegre, J., Gomez-Esteban, J.C., Lezcano, E., Ros, R., Ampuero, I., Vidal, L., Hoenicka, J., Rodriguez, O., Atares, B., et al. (2004). The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55, 164-173. https://doi.org/10.1002/ana.10795