DOI QR코드

DOI QR Code

A Comparison of Aerodynamic Prediction Methodologies for Missile Configurations

유도무기 형상의 공력 특성 예측 방법 비교

  • Received : 2022.08.31
  • Accepted : 2022.10.13
  • Published : 2022.11.01

Abstract

The wind tunnel test data for the missile configuration were compared with analysis results using various semi-empirical code and CFD analysis code. The three types of configurations were used for comparison including 2 types of main wing, inline and interdigitate configuration that the main wing and tail intersect. Additionally, it was confirmed that the vortex flow was accurately predicted by comparing the CFD analysis result with the flow visualization test result.

유도무기 형상에 대한 풍동시험 데이터를 다양한 반경험식 기반 코드 및 CFD해석 코드를 이용한 공력 해석 결과와 비교하였다. 주날개 형상 2종과 주날개와 꼬리날개가 일렬로 늘어선 inline 형상 및 서로 교차되는 interdigitate 형상 등 총 3가지 형상에 대해 시험결과와 비교하였으며, 형상의 특징에 따라 코드별로 차이가 있는 것을 확인하였다. 추가적으로 CFD해석결과를 유동가시화 시험결과와 비교함으로써 CFD 해석 코드가 와류의 흐름을 정확하게 예측하는 것을 확인하였다.

Keywords

References

  1. Yoon, S. J., "Some Trends in Aerodynamic Analysis Methods," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 22, No. 3, 1994, pp. 107~116.
  2. Hemsch, M. J., "The Component Build-Up Method for Engineering Analysis of Missiles at Low-to-High Angles of Attack," Tactical Missile Aerodynamics: Prediction Methodology, AIAA, 1992.
  3. Rosema, C. C., Doyle, J. B. and Blake, W. B., Missile Data Compendium (DATCOM) User Manual - 2014 Revision, December 2014.
  4. Moore, F. G. and Moore, L. Y., "New Method to Predict Nonlinear Roll Damping Moments," Journal of Spacecraft and Rockets, Vol. 45 No. 5, 2008, pp. 955~964. https://doi.org/10.2514/1.34974
  5. Moore, F. G. and Moore, L. Y., "Approximate Method to Calculate Nonlinear Rolling Moment due to Differential Fin Deflection," Journal of Spacecraft and Rockets, Vol. 49 No. 2, 2012, pp. 250~260. https://doi.org/10.2514/1.A32074
  6. Pitts, W. C., Nielsen, J. N. and Kaattari, G. E., "Lift and Center of Pressure of Wing-Body-Tail Combinations at Subsonic, Transonic, and Supersonic Speeds," NACA TR-1307, 1957.
  7. Blair Jr., A. B., Love, J. and Lesieutre, D., "Recent Applications and Improvements to the Engineering-Level Aerodynamic Prediction Software MISL3," AIAA Paper 2002-0275, AIAA 40th Aerospace Sciences Meeting, January 2002.
  8. Blake, W. B., MISSILE DATCOM User's Manual-2011 Revision, Air Force Research Laboratory, March 2011.
  9. Moore, F. G. and Moore, L. Y., "2009 Version of the Aeroprediction Code: AP09," Journal of Spacecraft and Rockets Vol. 45, No. 4, 2008, pp. 677~690. https://doi.org/10.2514/1.35703
  10. Lesieutre, D. J., "MISL3 Aerodynamic Analysis For Finned Vehicles With Axisymmetric Bodies," NEAR TR 654, Nielsen Engineering & Research, June 2010.
  11. Siemens Industries Digital Software, Simcenter STAR-CCM+ User Guide - Version 2021.6, Siemens, June 2021.
  12. Roe, P. L., "Approximate Riemann Solvers, Parameter Vectors, and Difference schemes," Journal of Computational Physics, Vol. 43, No. 2, 1981, pp. 357~372. https://doi.org/10.1016/0021-9991(81)90128-5
  13. Venkatakrishnan, V., "On the Accuracy of Limiters and Convergence to Steady State Solutions," AIAA 31st Aerospace Sciences Meeting, January 1993.
  14. Menter, F. R., "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications," AIAA Journal, Vol. 32, No. 8, 1994, pp. 1598~1605. https://doi.org/10.2514/3.12149
  15. Moore, F., Approximate Methods for Weapon Aerodynamics, AIAA, 2000, pp. 143~149.
  16. Kang, E. J., Go, B. Y. and Lee, K. S., "Analysis for Rolling Moment Characteristics of Canard-Tail Missile using CFD," Proceeding of The Korean Society for Computational Fluids Engineering Spring Conference, May 2018, pp. 90~91.