DOI QR코드

DOI QR Code

노거수 내부결함 탐지를 위한 비파괴 음파단층촬영의 신뢰성 분석(소나무·은행나무를 중심으로)

Reliability of Non-invasive Sonic Tomography for the Detection of Internal Defects in Old, Large Trees of Pinus densiflora Siebold & Zucc. and Ginkgo biloba L.

  • 손지원 (국립문화재연구원 자연문화재연구실) ;
  • 이광규 (국립문화재연구원 자연문화재연구실) ;
  • 안유진 (국립문화재연구원 자연문화재연구실) ;
  • 신진호 (국립문화재연구원 자연문화재연구실)
  • Son, Ji-Won (Div. of Natural Heritage, National Research Institute of Cultural Heritage) ;
  • Lee, Gwang-Gyu (Div. of Natural Heritage, National Research Institute of Cultural Heritage) ;
  • An, Yoo-Jin (Div. of Natural Heritage, National Research Institute of Cultural Heritage) ;
  • Shin, Jin-Ho (Div. of Natural Heritage, National Research Institute of Cultural Heritage)
  • 투고 : 2022.06.17
  • 심사 : 2022.09.08
  • 발행 : 2022.10.31

초록

강풍, 폭우 등 이상기후의 대형화와 빈도 증가로 인해 나무가 부러지거나 쓰러지는 훼손이 증가하고 있으나 나무 내부의 공동, 부후 등 구조적 결함은 육안조사로 판별이 어렵기 때문에 예측을 통한 사전대응에 한계가 있다. 비파괴음파단층촬영은 나무에 미치는 물리적 훼손을 최소화하면서 내부결함을 추정하는 방법으로 내부결함 진단에 효율적이나 수종별 정확도에 차이가 발생하기 때문에 현장적용 전 측정결과의 신뢰성 분석이 선행되어야 한다. 이번 연구는 우리나라 대표 수종인 소나무와 은행나무 노거수를 대상으로 음파단층촬영의 신뢰성 검증을 위해 침입성 드릴저항 측정을 교차 적용하여 목재 내부결함을 측정하고 평가결과를 비교하였다. 두 집단 간 결함부 측정 평균값에 대한 t검정 결과 소나무는 통계적으로 유의한 차이가 없는 반면, 은행나무는 유의성에 차이가 있었다. 선형회귀분석 결과 두 수종 모두 드릴저항그래프의 결함이 증가할 때 음파단층영상 결함이 증가하는 양의 상관관계를 보였다.

Damage to forests, such as broken or falling trees, has increased due to the increased intensity and frequency of abnormal climate events, such as strong winds and heavy rains. However, it is difficult to respond to them in advance based on prediction since structural defects such as cavities and bumps inside trees are difficult to identify with a visual inspection. Non-invasive sonic tomography (SoT) is a method of estimating internal defects while minimizing physical damage to trees. Although SoT is effective in diagnosing internal defects, its accuracy varies depending on the species. Therefore, it is necessary to analyze the reliability of its measurement results before applying it in the field. In this study, we measured internal defects in wood by cross-applying destructive resistance micro drilling on old Pinus densifloraSiebold & Zucc. and Ginkgo bilobaL., which are representative tree species in Korea, to verify the reliability of SoT and compared the evaluation results. The t-test for the mean values of the defect measurement between the two groups showed no statistically significant difference in pine trees and some difference in ginkgo trees. Linear regression analysis results showed a positive correlation with an increase in defects in SoT images when the defects in the drill resistance graph increased in both species.

키워드

과제정보

이 논문은 국립문화재연구원에서 지원하는 연구비(NRICH-2105-A13F-1)에 의하여 연구되었음.

참고문헌

  1. Allison, R.B. and X. Wang(2015) Nondestructive testing in the urban forest(2nd ed.). USDA Forest Service, Wisconsin, pp.77-86.
  2. Argus Electronic Gmbh(2017) Picus Sonic tomograph manual. Argus Electronic Gmbh, Rostock, 66pp.
  3. Bhatia, K.T., G.A. Vecchi, T.R. Knutson, H. Murakami, J. Kossin, K.W. Dixon and C.E. Whitlock(2019) Recent increases in tropical cyclone intensification rates. Nature Communications 10: 635. https://doi.org/10.1038/s41467-019-08471-z
  4. Brazee, N.J., R.E. Marra, L. Gocke and P. Van Wassenaer(2011) Non-destructive assessment of internal decay in three hardwood species of Northeastern North America using sonic and electrical impedance tomography. Forestry 84: 33-39. https://doi.org/10.1093/forestry/cpq040
  5. Ceraldi, C., V. Mormone and E. Russo-Ermolli(2001) Resistographic inspection of ancient timber structures for the evaluation of mechanical characteristics. Materials and Structure 34: 59-64. https://doi.org/10.1007/BF02482201
  6. Gao, Y. and B.J. Cha(2009)The non-destructive test for the vitality measurements and inside diagnosis of old trees. Mun Wha Jae 42(1): 144-157. (in Korean with English abstract)
  7. Gilbert, G.S., J.O. Ballesteros, C.A. Barrios-Rodriguez, E.F. Bonadies, M.L. Cedeno-Sanchez, N.J. Fossatti-Caballero, M.M. Trejos-Rodriguez and J.M. Perez-Suniga et al.(2016) Use of sonic tomography to detect and quantify wood decay in living trees. Applications in Plant Sciences 4(12): apps.1600060. https://doi.org/10.3732/apps.1600060
  8. Kang, B.H., S.J. Joe, J.G. Son, N.C. Kim and M.H. Kim(2014) The health analysis of protected tree 'Zelkova serrata' using an ultrasonic tomograph. Journal of the Korean Society of Env. Res. Tech. 17(2): 73-83. (in Korean with English abstract)
  9. Karlinasari, L., M.I. Danu, D. Nandika, M. Tujaman, D. Bogor and K. Ipb(2017) Drilling resistance method to evaluate density and hardness properties of resinous wood of agarwood (Aquilaria malaccensis Lamk.). Wood Res-Slovakia 62(5): 683-690.
  10. Karlinasari, L., N. Putri, M. Turjaman, I. Wahyudi and D. Nandika(2016) Moisture content effect on sound wave velocity and acoustic tomograms in agarwood trees(Aquilaria malaccensis Lamk.). Turkish Journal of Agriculture and Forestry 40(5): 696-704. https://doi.org/10.3906/tar-1511-74
  11. Kim, S.G., J.S. Jeong, G.H. Lee and J.S. Lee et al.(2015) A study for the appropriateness and stability for the protection facility of natural monument trees. National Research Institute of Cultural Heritage, Daejeon, 253pp. (in Korean with English abstract)
  12. Mattheck, C.(2015) The body language of trees. Karlsruhe, Germany, 402pp. (in Korean)
  13. Moon, M. and K.J. Ha(2021) Abnormal activities of tropical cyclones in 2019 over the Korean peninsula. Geophysical Research Letters 48(7): e90784.
  14. Rabe, C., D. Ferner, S. Fink and M.R. Schwarze(2004) Detection of decay in trees with stress waves and interpretation of acoustic picus images. Arboricultural Journal 28(1-2): 3-19. https://doi.org/10.1080/03071375.2004.9747399
  15. Richard, W.H. and R.C. James(2012) Arboriculture(4th ed.). Bioscience, Seoul, 559pp. (in Korean)
  16. Rinn, F.(1990) Device for material testing, especially wood by drill resistance measurements. German Patent 4122494.
  17. Rinn, F.(2012) Basics of typical resistance-drilling profiles. Western Arborist 17: 30-36.
  18. Sharapov, E., C. Brischke and H. Militz(2020) Assessment of preservative-treated wooden poles using drilling-resistance measurements. Forests 11(1): 20. https://doi.org/10.3390/f11010020
  19. Sharapov, E., C. Brischke, H. Militz and E. Smirnova(2018) Effects of white rot and brown rot on the drilling resistance measurements in wood. Holzforschung 72(10): 905-913. https://doi.org/10.1515/hf-2017-0204
  20. Son, J.W., G.K. Lee and J.H. Shin(2021) Reliability of noninvasive sonic tomography for the detection of internal defects in old, large trees of Abies holophylla Maxim. Forests 12: 1131. https://doi.org/10.3390/f12081131
  21. Tallavo, F., G. Cascante and M.D. Pandey(2012) A novel methodology for condition assessment of wood poles using ultrasonic testing. NDT & E International 52: 149-156. https://doi.org/10.1016/j.ndteint.2012.08.002
  22. Wang, X. and R.B. Allison(2008) Decay detection in red oak trees using a combination of visual inspection, acoustic testing, and resistance microdrilling. Arboriculture & Urban Forestry 34(1): 1-4. https://doi.org/10.48044/jauf.2008.001
  23. Wu, X., G.H. Li, Z. Jiao and X. Wang(2018) Reliability of acoustic tomography and ground-penetrating radar for tree decay detection. Applications in Plant Science 6(10): e1187.