DOI QR코드

DOI QR Code

Characteristics of soybean urease induced CaCO3 precipitation

  • Zhu, Liping (School of Water Resources and Environmental Engineering, East China University oftechnology) ;
  • Lang, Chaopeng (Chongqing Wanzhou District Housing Management Center) ;
  • Li, Bingyan (School of Civil and Architectural Engineering, East China University of Technology) ;
  • Wen, Kejun (Department of Civil and Environmental Engineering, Jackson State University) ;
  • Li, Mingdong (School of Civil and Architectural Engineering, East China University of Technology)
  • Received : 2022.05.01
  • Accepted : 2022.10.28
  • Published : 2022.11.10

Abstract

Bio-CaCO3 is a blowout environment-friendly materials for soil improvement and sealing of rock fissures. To evaluate the chemical characteristics, shape, size and productivity of soybean urease induced CaCO3 precipitates (SUICP), experimental studies were conducted via EDS, XRD, FT-IR, TGA, BET, and SEM. Also, the conversion rate of SUICP reaction at different time were determined and analyzed. The Bio-CaCO3 product obtained by SUICP is comprehensively judged as calcite based on the results of EDS, XRD and FT-IR. The SUICP calcite precipitates are detected as spherical or ellipsoidal particles 3-6 ㎛ in diameter with nanoscale pores on their surface, and this morphology is novel. The median secondary particle size d50 is 39-88 ㎛, indicating the agglomeration of the primary calcite particles. The Bio-calcite decomposes at 650-780℃, representing a medium thermal stability. The conversion rate of SUICP reaction can reach 80% in 24h, which is much more efficient than microbially induced CaCO3 precipitation. These results reveal the knowledges of SUICP, and further direct its engineering applications. Moreover, we show an economic channel to obtain porous spherical calcite.

Keywords

Acknowledgement

This research is based upon work supported by the National Foundation of China under Grant No. 51869001 and No. 52168043, Key Research and Development Program of Jiangxi Province under Grant No. 20202BBG73037, Open Fund from Engineering Research Center for Geological Environment and Underground Space of Jiangxi Province (JXDHJJ2021-013) as well as Shuangqian Innovative Talents of Jiangxi(Mingdong Li) and Young Jinggang Scholar(Mingdong Li).

References

  1. Aliotta, L., Cinelli, P., Coltelli, M.B. and Lazzeri, A. (2019), "Rigid filler toughening in PLA-Calcium Carbonate composites: Effect of particle surface treatment and matrix plasticization", Eur. Polymer J., 113, 78-88. http://doi.org/10.1016/j.eurpolymj.2018.12.042.
  2. Almajed, A., Abbas, H., Arab, M., Alsabhan, A., Hamid, W. and Al-Salloum, Y. (2020), "Enzyme-Induced Carbonate Precipitation (EICP)-Based methods for ecofriendly stabilization of different types of natural sands", J. Cleaner Production, 274, 122627. https://doi.org/10.1016/j.jclepro.2020.122627.
  3. Almajed, A., Lemboye, K., Arab, M.G. and Alnuaim, A. (2020), "Mitigating wind erosion of sand using biopolymer-assisted EICP technique", Soils Found., 60(2), 356-371. https://doi.org/10.1016/j.sandf.2020.02.011.
  4. Bang, J.H., Jang, Y.N., Kim, W., Song, K.S., Jeon, C.W., Chae, S. C. and Lee, M.G. (2012), "Specific surface area and particle size of calcium carbonate precipitated by carbon dioxide microbubbles", Chem. Eng. J., 198, 254-260. https://doi.org/10.1016/j.cej.2012.05.081.
  5. Bushuev, Y.G., Finney, A.R. and Rodger, P.M. (2015), "Stability and structure of hydrated amorphous calcium carbonate", Crystal Growth Design, 15(11), 5269-5279. https://doi.org/10.1021/acs.cgd.5b00771.
  6. Carmona, J.P., Oliveira, P.J.V. and Lemos, L.J. (2016), "Biostabilization of a sandy soil using enzymatic calcium carbonate precipitation", Procedia Eng., 143, 1301-1308. https://doi.org/10.1016/j.proeng.2016.06.144.
  7. Chandra, A. and Ravi, K. (2021), "Application of enzyme-induced carbonate precipitation (EICP) to improve the shear strength of different type of soils", In Problematic soils and geoenvironmental concerns (pp. 617-632). Springer, Singapore. https://doi.org/10.1007/978-981-15-6237-2_52.
  8. Chen, L., Shen, Y.H., Xie, A.J. and Cheng, Q.N. (2010), "Biological synthesis of calcite crystals using Scindapsus aureum petioles", J. Mater. Sci., 45(11), 2938-2943. https://doi.org/10.1007/s10853-010-4286-x.
  9. Chen, T., Shi, P., Li, Y., Duan, T., Yu, Y., Li, X. and Zhu, W. (2018), "Biomineralization of varied calcium carbonate crystals by the synergistic effect of silk fibroin/magnesium ions in a microbial system", Cryst. Eng. Comm., 20(17), 2366-2373. https://doi.org/10.1039/c8ce00099a.
  10. Chen, Y. and Qian, C. (2021), "A new method for anti-efflorescence of mortar by bio-mineralization", Constr. Build. Mater., 290, 123261. https://doi.org/10.1016/J.CONBUILDMAT.2021.123261.
  11. Choi, S.G., Chu, J., Brown, R.C., Wang, K. and Wen, Z. (2017), "Sustainable biocement production via microbially induced calcium carbonate precipitation: Use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass", ACS Sustain. Chem. Eng., 5(6), 5183-5190. https://doi.org/10.1021/acssuschemeng.7b02137.
  12. Cui, M.J., Lai, H.J., Hoang, T. and Chu, J. (2021), "One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement", Acta Geotechnica, 16(2), 481-489. https://doi.org/10.1007/s11440-020-01043-2.
  13. Cui, M.J., Zheng, J.J., Chu, J., Wu, C.C. and Lai, H.J. (2021), "Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand", Acta Geotechnica, 16(5), 1377-1389. https://doi.org/10.1007/s11440-020-01099-0.
  14. Deepika, S., Hait, S. K., Christopher, J., Chen, Y., Hodgson, P. and Tuli, D.K. (2013), "Preparation and evaluation of hydrophobically modified core shell calcium carbonate structure by different capping agents", Powder Technol., 235, 581-589. https://doi.org/10.1016/j.powtec.2012.11.015.
  15. Denisenko, Y.G., Atuchin, V.V., Molokeev, M.S., Sedykh, A.E., Khritokhin, N.A., Aleksandrovsky, A.S. and Muller-Buschbaum, K. (2022), "Exploration of the crystal structure and thermal and spectroscopic properties of monoclinic praseodymium sulfate Pr2 (SO4)3", Molecules, 27(13), 3966. https://doi.org/10.3390/molecules27133966.
  16. Dyer, M. and Viganotti, M. (2016), "Oligotrophic and eutrophic MICP treatment for silica and carbonate sands", Bioinspired, Biomimetic Nanobiomater., 6(3), 168-183. https://doi.org/10.1680/jbibn.16.00002
  17. Elsharkawy, S. and Mata, A. (2018), "Hierarchical biomineralization: from nature's designs to synthetic materials for regenerative medicine and dentistry", Adv. Health. Mater., 7(18), 1800178. https://doi.org/10.1002/adhm.201800178
  18. Feng, J., Yang, F. and Qian, S. (2021), "Improving the bond between polypropylene fiber and cement matrix by nano calcium carbonate modification", Constr. Build. Mater., 269, 121249. https://doi.org/10.1016/j.conbuildmat.2020.121249.
  19. Feoktistova, N.A., Vikulina, A.S., Balabushevich, N.G., Skirtach, A.G. and Volodkin, D. (2020), "Bioactivity of catalase loaded into vaterite CaCO3 crystals via adsorption and co-synthesis", Mater. Design, 185, 108223. https://doi.org/10.1016/j.matdes.2019.108223.
  20. Zou, Z., Habraken, W.J., Matveeva, G., Jensen, A.C., Bertinetti, L., Hood, M.A. and Fratzl, P. (2019), "A hydrated crystalline calcium carbonate phase: Calcium carbonate hemihydrate", Science, 363(6425), 396-400. https://doi.org/10.1126/science.aav0210.
  21. Gao, Y., He, J., Tang, X. and Chu, J. (2019), "Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil", Soils Found., 59(5), 1631-1637. https://doi.org/10.1016/j.sandf.2019.03.014.
  22. He, J., Gao, Y., Gu, Z., Chu, J. and Wang, L. (2020), "Characterization of crude bacterial urease for CaCO3 precipitation and cementation of silty sand", J. Mater. Civil Eng., 32(5), 04020071. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003100.
  23. He, J., Fang, C., Hang, L., Qi, Y., Mao, X., Yan, B. and Gao, Y. (2021), "Enzyme induced carbonate precipitation for soil internal erosion control under water seepage", Geomech. Eng., 26(3), 289-299. https://doi.org/10.12989/gae.2021.26.3.289.
  24. Islam, K.N., Bakar, M.Z.B.A., Ali, M.E., Hussein, M.Z.B., Noordin, M.M., Loqman, M.Y. and Hashim, U. (2013), "A novel method for the synthesis of calcium carbonate (aragonite) nanoparticles from cockle shells", Powder Technol., 235, 70-75. https://doi.org/10.1016/j.powtec.2012.09.041.
  25. Javadi, N., Khodadadi, H., Hamdan, N. and Kavazanjian Jr, E. (2018), "EICP treatment of soil by using urease enzyme extracted from watermelon seeds", In IFCEE 2018, 115-124. https://doi.org/10.1061/9780784481592.012.
  26. Kim, S. and Park, C.B. (2010), "Dopamine-induced mineralization of calcium carbonate vaterite microspheres", Langmuir, 26(18), 14730-14736. https://doi.org/10.1021/la1027509.
  27. Kumar, D. and Ranade, R. (2021), "Development of strain-hardening cementitious composites utilizing slag and calcium carbonate powder", Constr. Build. Mater., 273, 122028. https://doi.org/10.1016/J.CONBUILDMAT.2020.122028.
  28. Lai, Y., Chen, L., Bao, W., Ren, Y., Gao, Y., Yin, Y. and Zhao, Y. (2015), "Glycine-mediated, selective preparation of monodisperse spherical vaterite calcium carbonate in various reaction systems", Crystal Growth Design, 15(3), 1194-1200. https://doi.org/10.1021/cg5015847.
  29. Lee, S.W., Kim, Y.J., Lee, Y.H., Guim, H. and Han, S.M. (2016), "Behavior and characteristics of amorphous calcium carbonate and calcite using CaCO3 film synthesis", Mater. Design, 112, 367-373. https://doi.org/10.1016/j.matdes.2016.09.099.
  30. Lei, Y. (2015), "Experimental synthesis and geological significance of calcium carbonate under control of different additives", Northwest University.
  31. Li, L., Yang, Y., Lv, Y., Yin, P. and Lei, T. (2020), "Porous calcite CaCO3 microspheres: Preparation, characterization and release behavior as doxorubicin carrier", Colloids Surfaces B: Biointerfaces, 186, 110720. https://doi.org/10.1016/j.colsurfb.2019.110720.
  32. Li, M., Li, L., Ogbonnaya, U., Wen, K., Tian, A. and Amini, F. (2016), "Influence of fiber addition on mechanical properties of MICP-treated sand", J. Mater. Civil Eng., 28(4), 04015166. https://doi.org/10.1061/9780784480472.002.
  33. Li, M., Wen, K., Li, Y. and Zhu, L. (2018), "Impact of oxygen availability on microbially induced calcite precipitation (MICP) treatment", Geomicrobio. J., 35(1), 15-22. https://doi.org/10.1080/01490451.2017.1303553.
  34. Liu, S., Du, K., Huang, W., Wen, K., Amini, F. and Li, L. (2021), "Improvement of erosion-resistance of bio-bricks through fiber and multiple MICP treatments", Constr. Build. Mater., 271, 121573. https://doi.org/10.1016/J.CONBUILDMAT.2020.121573.
  35. Liu, Y., Chen, Y., Huang, X. and Wu, G. (2017), "Biomimetic synthesis of calcium carbonate with different morphologies and polymorphs in the presence of bovine serum albumin and soluble starch", Mater. Sci. Eng., 79, 457-464. https://doi.org/10.1016/j.msec.2017.05.085.
  36. Morandeau, A., Thiery, M. and Dangla, P. (2014), "Investigation of the carbonation mechanism of CH and CSH in terms of kinetics, microstructure changes and moisture properties", Cement Concrete Res., 56, 153-170. https://doi.org/10.1016/j.cemconres.2013.11.015.
  37. Nam, I.H., Chon, C.M., Jung, K.Y., Choi, S.G., Choi, H. and Park, S.S. (2015), "Calcite precipitation by ureolytic plant (Canavalia ensiformis) extracts as effective biomaterials", KSCE J. Civil Eng., 19(6), 1620-1625. https://doi.org/10.1007/s12205-014-0558-3.
  38. Palmqvist, N.M., Nedelec, J.M., Seisenbaeva, G.A. and Kessler, V. G. (2017), "Controlling nucleation and growth of nano-CaCO3 via CO2 sequestration by a calcium alkoxide solution to produce nanocomposites for drug delivery applications", Acta Biomaterialia, 57, 426-434. https://doi.org/10.1016/j.actbio.2017.05.006.
  39. Pan, X., Chu, J., Yang, Y. and Cheng, L. (2020), "A new biogrouting method for fine to coarse sand", Acta Geotechnica, 15(1), 1-16. https://doi.org/10.1007/s11440-019-00872-0.
  40. Park, J. and Choi, B.Y. (2022), "Feasibility study of enzyme-induced calcium carbonate precipitation (EICP) for CO2 leakage prevention", Geosci. J., 26(2), 279-288. https://doi.org/10.1007/S12303-021-0033-3.
  41. Qian, C., Ren, X., Rui, Y. and Wang, K. (2021a), "Characteristics of bio-CaCO3 from microbial bio-mineralization with different bacteria species", Biochem. Eng. J., 176, 108180. https://doi.org/10.1016/J.BEJ.2021.108180.
  42. Qian, C., Zheng, T., Zhang, X. and Su, Y. (2021b). "Application of microbial self-healing concrete: Case study", Constr. Build. Mater., 290, 123226. https://doi.org/10.1016/J.CONBUILDMAT.2021.123226.
  43. Ren, L., Zhang, Q., Zhu, W., Li, Q. and Mao, X. (2015), "Biomimetic synthesis of CaCO3 microrings", J. Synthetic Crystals, 44(1), 250-255. https://doi.org/10.16553/j.cnki.issn1000-985x.2015.01.049.
  44. Saulat, H., Cao, M., Khan, M.M., Khan, M., Khan, M.M. and Rehman, A. (2020), "Preparation and applications of calcium carbonate whisker with a special focus on construction materials", Constr. Build. Mater., 236, 117613. https://doi.org/10.1016/j.conbuildmat.2019.117613.
  45. Song, J.Y., Sim, Y., Jang, J., Hong, W.T. and Yun, T.S. (2020), "Near-surface soil stabilization by enzyme-induced carbonate precipitation for fugitive dust suppression", Acta Geotechnica, 15(7), 1967-1980. https://doi.org/10.1007/s11440-019-00881-z.
  46. Tao, H., He, Y. and Zhao, X. (2015), "Preparation and characterization of calcium carbonate-titanium dioxide core- shell (CaCO3@ TiO2) nanoparticles and application in the papermaking industry", Powder Technol., 283, 308-314. https://doi.org/10.1016/j.powtec.2015.05.039.
  47. Trushina, D.B., Bukreeva, T.V. and Antipina, M.N. (2016), "Size-controlled synthesis of vaterite calcium carbonate by the mixing method: aiming for nanosized particles", Crystal Growth Design, 16(3), 1311-1319. https://doi.org/10.1021/acs.cgd.5b01422.
  48. Van Paassen, L.A., Harkes, M.P., Van Zwieten, G.A., Van der Zon, W.H., Van der Star, W.R.L. and Van Loosdrecht, M.C.M. (2009), "Scale up of BioGrout: a biological ground reinforcement method", Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, 1-4, 2328-2333. https://doi.org/10.3233/978-1-60750-031-5-2328.
  49. Wang, A., Li, J., Dong, Q., Wang, S., Jian, H., Wang, M. and Bai, S. (2019), "Preparation of microgels with ultrahigh payload of various hydrophilic and hydrophobic inorganic nanoparticle composites up to 92 wt%", ACS Appl. Mater. Interfaces, 11(4), 4408-4415. https://doi.org/10.1021/acsami.8b20089.
  50. Wang, J., Kong, Y., Liu, F., Shou, D., Tao, Y. and Qin, Y. (2018), "Construction of pH-responsive drug delivery platform with calcium carbonate microspheres induced by chitosan gels", Ceramics Int., 44(7), 7902-7907. https://doi.org/10.1016/j.ceramint.2018.01.227.
  51. Wen, K., Bu, C., Liu, S., Li, Y. and Li, L. (2018), "Experimental investigation of flexure resistance performance of bio-beams reinforced with discrete randomly distributed fiber and bamboo", Constr. Build. Mater., 176, 241-249. https://doi.org/10.1016/j.conbuildmat.2018.05.032.
  52. Wen, K., Li, Y., Amini, F. and Li, L. (2020), "Impact of bacteria and urease concentration on precipitation kinetics and crystal morphology of calcium carbonate", Acta Geotechnica, 15(1), 17-27. https://doi.org/10.1007/s11440-019-00899-3.
  53. Wu, C., Chu, J., Wu, S., Cheng, L. and van Paassen, L.A. (2019), "Microbially induced calcite precipitation along a circular flow channel under a constant flow condition", Acta Geotechnica, 14(3), 673-683.https://doi.org/10.1007/s11440-018-0747-1.
  54. Wu, L., Miao, L., Sun, X., Chen, R. and Wang, C. (2020), "Experimental study on solidifying sand using plant-derived urease induced calcium carbonate precipitation", Chinese J. Geotech. Eng., 42(4), 714-720. https://doi.org/10.11779/CJGE202004014.
  55. Xiao, Y., Stuedlein, A.W., Ran, J., Evans, T.M., Cheng, L., Liu, H. and Chu, J. (2019), "Effect of particle shape on strength and stiffness of biocemented glass beads", J. Geotech. Geoenviron. Eng., 145(11), 06019016.https://doi.org/10.1061/(ASCE)GT.19435606.0002165.
  56. Xiao, Y., Stuedlein, A.W., Pan, Z., Liu, H., Matthew Evans, T., He, X. and Van Paassen, L. A. (2020), "Toe-bearing capacity of precast concrete piles through biogrouting improvement", J. Geotech. Geoenviron. Eng., 146(12). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002404.
  57. Xiao, Y., Stuedlein, A.W., He, X., Han, F., Evans, T.M., Pan, Z. and Van Paassen, L. (2021), "Lateral responses of a model pile in biocemented sand", Int. J. Geomech., 21(11), 06021027. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002179.
  58. Xu, J., Zhang, T., Jiang, Y., Yang, D., Qiu, F., Chen, Q. and Yu, Z. (2020), "Preparation of self-healing acrylic copolymer composite coatings for application in protection of paper cultural relics", Polymer Eng. Sci., 60(2), 288-296. https://doi.org/10.1002/pen.25282.
  59. Xu, X., Guo, H., Li, M. and Deng, X. (2021), "Bio-cementation improvement via CaCO3 cementation pattern and crystal polymorph: A review", Constr. Buildi. Mater., 297, 123478. https://doi.org/10.1016/J.CONBUILDMAT.2021.123478.
  60. Yang, J. and Shih, S.( 2010), "Preparation of high school CaCO3 for SO2 removal by absorption of CO2 in aqueous suspensions of Ca(OH)2", Powder Technol., 202, 101-110. https://doi.org/10.1016/j.powtec.2010.04.024
  61. Yang, Y., Li, M., Tao, X., Zhang, S., He, J., Zhu, L. and Wen, K. (2022), "The effect of nucleating agents on enzyme-induced carbonate precipitation and corresponding microscopic mechanisms", Materials, 15(17), 5814. https://doi.org/10.3390/MA15175814.
  62. Yuan, H., Ren, G., Liu, K., Zheng, W. and Zhao, Z. (2020), "Experimental study of EICP combined with organic materials for silt improvement in the yellow river flood area", Appl. Sci., 10(21), 7678. https://doi.org/10.3390/APP10217678.
  63. Zhao, L., Zhang, Y., Miao, Y. and Nie, L. (2016), "Controlled synthesis, characterization and application of hydrophobic calcium carbonate nanoparticles in PVC", Powder Technol., 288, 184-190. https://doi.org/10.1016/j.powtec.2015.11.001.
  64. Zhao, X., Feng, Q., Li, J. and Peng J. (2019), "Research of influences of temperature on amount of microbially induced carbonate precipitation", Ind. Constr., 49(11), 88-92+112. https://doi.org/10.13204/j.gyjz201911015
  65. Zhao, Q., Li, L., Li, C., Li, M., Amini, F. and Zhang, H. (2014), "Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease", J. Mater. Civil Eng., 26(12), 04014094. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001013.
  66. Zhuravlev, Y.N. and Atuchin, V.V. (2020), "Comprehensive density functional theory studies of vibrational spectra of carbonates", Nanomater., 10(11), 2275. https://doi.org/10.3390/nano10112275.