DOI QR코드

DOI QR Code

Prediction of maximum shear modulus (Gmax) of granular soil using empirical, neural network and adaptive neuro fuzzy inference system models

  • Hajian, Alireza (Department of Physics, Najafabad Branch, Islamic Azad University) ;
  • Bayat, Meysam (Department of Civil Engineering, Najafabad Branch, Islamic Azad University)
  • Received : 2022.04.03
  • Accepted : 2022.10.31
  • Published : 2022.11.10

Abstract

Maximum shear modulus (Gmax or G0) is an important soil property useful for many engineering applications, such as the analysis of soil-structure interactions, soil stability, liquefaction evaluation, ground deformation and performance of seismic design. In the current study, bender element (BE) tests are used to evaluate the effect of the void ratio, effective confining pressure, grading characteristics (D50, Cu and Cc), anisotropic consolidation and initial fabric anisotropy produced during specimen preparation on the Gmax of sand-gravel mixtures. Based on the tests results, an empirical equation is proposed to predict Gmax in granular soils, evaluated by the experimental data. The artificial neural network (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) models were also applied. Coefficient of determination (R2) and Root Mean Square Error (RMSE) between predicted and measured values of Gmax were calculated for the empirical equation, ANN and ANFIS. The results indicate that all methods accuracy is high; however, ANFIS achieves the highest accuracy amongst the presented methods.

Keywords

References

  1. Alidoosti, A., Ajalloian, R. and Alireza, H. (2016), "Assessment of Geotechnical properties of sediments along Isfahan Line2 subway with emphasis on in-situ tests", Proceedings of the 5th International conference on Geotechnical Engineering and Soil Mechanics, Tehran, Iran.
  2. Bayat, M. and Ghalandarzadeh, A. (2018), "Stiffness degradation and damping ratio of sand-gravel mixtures under saturated state", Int. J. Civil Eng., 16(10), 1261-1277. https://doi.org/10.1007/s40999-017-0274-8.
  3. Bayat, M. and Ghalandarzadeh, A. (2019), "Influence of depositional method on dynamic properties of granular soil", Int. J. Civil Eng., 17(6), 907-920. https://doi.org/10.1007/s40999-019-00412-7.
  4. Bayat, M. and Ghalandarzadeh, A. (2020), "Modified models for predicting dynamic properties of granular soil under anisotropic consolidation", Int. J. Geomech., 20(3), 04019197. https://doi.org/10.1061/(asce)gm.1943-5622.0001607.
  5. Bosiljkov, V.Z., Totoev, Y.Z. and Nichols, J.M. (2005), "Shear modulus and stiffness of brickwork masonry: An experimental perspective", Struct. Eng. Mech., 20(1), 21-43. https://doi.org/10.12989/sem.2005.20.1.021.
  6. Camacho-Tauta, J., Cascante, G., Santos, J.A., Viana da Fonseca, A.A. and Dos Santos, J.A. (2011), "Measurements of shear wave velocity by resonant-column test, bender element test and miniature accelerometers", Proceedings of the 2011 Pan-Am Geotechnical Conference, (1998), 1-9. https://www.academia.edu/download/45552620/Measurements_of_shear_wave_velocity_by_r20160511-16261-1xq5sit.pdf. Accessed 18 May 2020.
  7. Camacho-tauta, J.F., David, J. and Alvarez, J. (2013), "Comparison between resonant-column and bender element tests on three types of soils", Comparison between resonant-column and bender element tests on three types of soils, 80(1), 163-172. http://www.scielo.org.co/pdf/dyna/v80n182/v80n182a20.pdf
  8. Carette, J. and Staquet, S. (2016), "Monitoring the setting process of eco-binders by ultrasonic P-wave and S-wave transmission velocity measurement: Mortar vs concrete", Constr. Build. Mate., 110, 32-41. https://doi.org/10.1016/j.conbuildmat.2016.02.019.
  9. Cha, M. and Cho, G.C. (2007), "Shear strength estimation of sandy soils using shear wave velocity", Geotech. Test. J., 30(6), 484-495. https://doi.org/10.1520/gtj100011.
  10. Chang, I. and Cho, G.C. (2010), "A new alternative for estimation of geotechnical engineering parameters in reclaimed clays by using shear wave velocity", Geotech. Test. J., 33(3). https://doi.org/10.1520/GTJ102360.
  11. Cho, H.I., Sun, C.G., Kim, J.H. and Kim, D.S. (2018), "OCR evaluation of cohesionless soil in centrifuge model using shear wave velocity", Geomech. Eng., 15(4), 987-995. https://doi.org/10.12989/gae.2018.15.4.987.
  12. Clayton, C.R.I. (2011), "Stiffness at small strain: Research and practice", Geotechnique, 61(1), 5-37. https://doi.org/10.1680/geot.2011.61.1.5.
  13. Dyvik, R. and Madshus, C. (1986), "Lab measurements of Gmax using bender elements", In Publikasjon - Norges Geotekniske Institutt. https://doi.org/10.1016/0148-9062(87)92023-7.
  14. El Mosallamy, M., El Fattah, T.T.A. and El Khouly, M. (2016), "Experimental study on the determination of small strain-shear modulus of loess soil", HBRC J., 12(2), 181-190. https://doi.org/10.1016/j.hbrcj.2014.11.010.
  15. Ferreira, C., da Fonseca, A. and Santos, J.A. (2007), "Comparison of simultaneous bender elements and resonant", Soil Stress-Strain Behavior: Measurement, Modeling and Analysis. Solid Mechanics and Its Applications, 523-535.
  16. Ghorbani, A. and Hasanzadehshooiili, H. (2018), "Prediction of UCS and CBR of microsilica-lime stabilized sulfate silty sand using ANN and EPR models; application to the deep soil mixing", Soils Found., 58(1), 34-49. https://doi.org/10.1016/j.sandf.2017.11.002.
  17. Goudarzy, M., Rahemi, N., Rahman, M.M. and Schanz, T. (2017), "Predicting the maximum shear modulus of sands containing nonplastic fines", J. Geotech. Geoenviron. Eng., 143(9), 06017013. https://doi.org/10.1061/(asce)gt.1943-5606.0001760.
  18. Gu, X., Yang, J. and Huang, M. (2013), "Laboratory measurements of small strain properties of dry sands by bender element", Soils Found., 53(5), 735-745. https://doi.org/10.1016/j.sandf.2013.08.011.
  19. Gu, X., Yang, J., Huang, M. and Gao, G. (2015), "Bender element tests in dry and saturated sand: Signal interpretation and result comparison", Soils Found., 55(5), 951-962. https://doi.org/10.1016/j.sandf.2015.09.002.
  20. Hajian, A. and Ghane, A. (2015), "Prediction of Geotechnical Behavior (Shear Strength, Compression, Friction Angle) of Oil Contaminated Sandy Soils using Artificial Neural Networks", In 3th international conference on Oil, Gas and Petrochemical, Shahid Behesti University, Tehran, Iran.
  21. Hajian, A. and Styles, P. (2018), Application of Soft Computing and Intelligent Methods in Geophysics. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-66532-0.
  22. Hardin, B.O. and Black, W.L. (1967). "Sand stiffness under various triaxial stresses", J. Terramech., 4(3), 70. https://doi.org/10.1016/0022-4898(67)90133-4.
  23. Hardin, B. and Richart, F. (1963), "Elastic wave velocities in granularsoils", J. Soil Mech. Found. Div., 89(1), 33-66. https://doi.org/10.1061/JSFEAQ.0000493
  24. Hoyos, L.R., Suescun-Florez, E.A. and Puppala, A.J. (2015),. "Stiffness of intermediate unsaturated soil from simultaneous suction-controlled resonant column and bender element testing", Eng. Geol., 188, 10-28. https://doi.org/10.1016/j.enggeo.2015.01.014.
  25. Hussien, M.N. andKarray, M. (2016), "Shear wave velocity as a geotechnical parameter: An overview", Can. Geotech. J., 53(2), 252-272. https://doi.org/10.1139/cgj-2014-0524.
  26. Jalalifar, H., Mojedifar, S., Sahebi, A.A. and Nezamabadi-pour, H. (2011), "Application of the adaptive neuro-fuzzy inference system for prediction of a rock engineering classification system", Comput. Geotech., 38(6), 783-790. https://doi.org/10.1016/j.compgeo.2011.04.005.
  27. Jang, J.S.R., Sun, C.T. and Mizutani, E. (2005), Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review]. IEEE Transactions on Automatic Control, 42. https://doi.org/10.1109/tac.1997.633847
  28. Kwon, S. and Lee, C. (2018), "Thm analysis for an in situ experiment using FLAC3D-TOUGH2 and an artificial neural network", Geomech. Eng., 16(4), 363-373. https://doi.org/10.12989/gae.2018.16.4.363.
  29. Li, B. (2011), "Effect of fabric anisotropy on the dynamic mechanical behavior of granular materials", Techniques. http://etd.ohiolink.edu/send-pdf.cgi/Li Bo.pdf?case1291071699
  30. Li, Y. (2016), "Teaching programming based on computational thinking", Proceedings - Frontiers in Education Conference, FIE, 2016-Novem(96), 241. https://doi.org/10.1109/FIE.2016.7757408.
  31. Liang, J., Han, B., Todorovska, M.I. and Trifunac, M.D. (2018), "2D dynamic structure-soil-structure interaction for twin buildings in layered half-space II: Incident SV-waves", Soil Dyn. Earthq. Eng., 113, 356-390. https://doi.org/10.1016/j.soildyn.2018.05.023.
  32. Luat, N.V., Lee, K. and Thai, D.K. (2020), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), 385-397. https://doi.org/10.12989/gae.2020.20.5.385.
  33. Mozumder, R.A. and Laskar, A.I. (2015), "Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using artificial neural network", Comput. Geotech., 69, 291-300. https://doi.org/10.1016/j.compgeo.2015.05.021.
  34. Nathan, A.J. and Scobell, A. (2012), "How China sees America", In Foreign Affairs, 91, 191-196. https://doi.org/10.1017/CBO9781107415324.004.
  35. Oh, T.M., Bang, E.S., Cho, G.C. and Park, E.S. (2017), "Estimation of undrained shear strength for saturated clay using shear wave velocity", Mar. Georesour. Geotec., 35(2), 236-244. https://doi.org/10.1080/1064119X.2016.1140855.
  36. Pooya Nejad, F., Jaksa, M.B., Kakhi, M. and McCabe, B.A. (2009), "Prediction of pile settlement using artificial neural networks based on standard penetration test data", Comput. Geotech., 36(7), 1125-1133. https://doi.org/10.1016/j.compgeo.2009.04.003.
  37. Rahman, M.M., Cubrinovski, M. and Lo, S.R. (2012), "Initial shear modulus of sandy soils and equivalent granular void ratio", Geomech. Geoeng., 7(3), 219-226. https://doi.org/10.1080/17486025.2011.616935.
  38. Rashidian, M., Ishihara, K., Kokusho, T., Kanatani, M. and Okamoto, T. (1995), "Effect of sample preparation methods on shear wave velocity", Proceedings of the 2nd International Conference on Seismology and Earthquake Engineering, Teheran, Iran.
  39. Ruan, B., Miao, Y., Cheng, K. and Yao, E. lei. (2021), "Study on the small strain shear modulus of saturated sand-fines mixtures by bender element test", Eur. J. Enviro. Civil Eng., 25(1), 28-38. https://doi.org/10.1080/19648189.2018.1513870.
  40. Saadat, M. and Bayat, M. (2022), "Prediction of the unconfined compressive strength of stabilised soil by Adaptive Neuro Fuzzy Inference System (ANFIS) and Non-Linear Regression (NLR)", Geomech. Geoeng., 17(1), 80-91. https://doi.org/10.1080/17486025.2019.1699668.
  41. Senetakis, K. and Payan, M. (2018), "Small strain damping ratio of sands and silty sands subjected to flexural and torsional resonant column excitation", Soil Dyn. Earthq. Eng., 114, 448-459. https://doi.org/10.1016/j.soildyn.2018.06.010.
  42. Shirley, D.J. (1978), "An improved shear wave transducer", J. Acoust. Soc. Am., 63(5), 1643-1645. https://doi.org/10.1121/1.381866.
  43. Sihag, P., Tiwari, N.K. and Ranjan, S. (2019), "Prediction of unsaturated hydraulic conductivity using adaptive neuro- fuzzy inference system (ANFIS)", ISH J. Hydraulic Eng., 25(2), 132-142. https://doi.org/10.1080/09715010.2017.1381861.
  44. Sivapullaiah, P.V., Guru Prasad, B. and Allam, M.M. (2009), "Modeling sulfuric acid induced swell in carbonate clays using artificial neural networks", Geomech. Eng., 1(4), 307-321. https://doi.org/10.12989/gae.2009.1.4.307.
  45. Teachavorasinskun, S. and Pongvithayapanu, P. (2016), "Shear wave velocity of sands subject to large strain triaxial loading", Geomech. Eng., 11(5), 713-723. https://doi.org/10.12989/gae.2016.11.5.713.
  46. Ueno, K., Kuroda, S., Hori, T. and Tatsuoka, F. (2019), "Elastic shear modulus variations during undrained cyclic loading and subsequent reconsolidation of saturated sandy soil", Soil Dyn. Earthq. Eng., 116, 476-489. https://doi.org/10.1016/j.soildyn.2018.10.041.
  47. Wang, G.X. and Kuwano, J. (1999), "Modeling of strain dependency of shear modulus and damping of clayey sand", Soil Dyn. Earthq. Eng., 18(6), 463-471. https://doi.org/10.1016/S0267-7261(99)00010-X.
  48. Wichtmann, T., Navarrete Hernandez, M.A. and Triantafyllidis, T. (2015), "On the influence of a non-cohesive fines content on small strain stiffness, modulus degradation and damping of quartz sand", Soil Dyn. Earthq. Eng., 69, 103-114. https://doi.org/10.1016/j.soildyn.2014.10.017.
  49. Xiao, H., Yao, K., Liu, Y., Goh, S.H. and Lee, F.H. (2018), "Bender element measurement of small strain shear modulus of cement-treated marine clay - Effect of test setup and methodology", Constr. Build. Mater., 172, 433-447. https://doi.org/10.1016/j.conbuildmat.2018.03.258.
  50. Yamada, S., Hyodo, M., Orense, R.P. and Dinesh, S.V. (2008), "Initial shear modulus of remolded sand-clay mixtures", J. Geotech. Geoenviron. Eng., 134(7), 960-971. https://doi.org/10.1061/(asce)1090-0241(2008)134:7(960).
  51. Yang, J. and Yan, X.R. (2009), "Factors affecting site response to multi-directional earthquake loading", Eng. Geol., 107(3-4), 77-87. https://doi.org/10.1016/j.enggeo.2009.04.002.
  52. Yang, Z.X., Lit, X.S., Yang, J., Li, X.S. and Yang, J. (2008), "Quantifying and modelling fabric anisotropy of granular soils", Geotechnique, 58(4), 237-248. https://doi.org/10.1680/geot.2008.58.4.237.
  53. Youn, J.U.U., Choo, Y.W.W. and Kim, D.S.S. (2008), "Measurement of small-strain shear modulus Gmax of dry and saturated sands by bender element, resonant column, and torsional shear tests", Can. Geotech. J., 45(10), 1426-1438. https://doi.org/10.1139/T08-069.
  54. Yu, P. and Richart, F.E. (1984), "Stress ratio effects on shear modulus of dry sands", J. Geotech. Eng., 110(3), 331-345. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:3(331).
  55. Zhou, Z., Yang, H., Xing, K. and Gao, W. (2018), "Prediction models of the shear modulus of normal or frozen soil-rock mixtures", Geomech. Eng., 15(2), 783-791. https://doi.org/10.12989/gae.2018.15.2.783.
  56. Zhu, S., Yang, G., Wen, Y. and Ou, L. (2014), "Dynamic shear modulus reduction and damping under high confining pressures for gravels", Geotech. Lett., 4, 179-186. https://doi.org/10.1680/geolett.14.00030.