DOI QR코드

DOI QR Code

Assessment of wall convergence for tunnels using machine learning techniques

  • Mahmoodzadeh, Arsalan (Rock Mechanics Division, School of Engineering, Tarbiat Modares University) ;
  • Nejati, Hamid Reza (Rock Mechanics Division, School of Engineering, Tarbiat Modares University) ;
  • Mohammadi, Mokhtar (Department of Information Technology, College of Engineering and Computer Science, Lebanese French University) ;
  • Ibrahim, Hawkar Hashim (Department of Civil Engineering, College of Engineering, Salahaddin University-Erbil) ;
  • Mohammed, Adil Hussein (Department of Communication and Computer Engineering, Faculty of Engineering, Cihan University-Erbil) ;
  • Rashidi, Shima (Department of Computer Science, College of Science and Technology, University of Human Development)
  • Received : 2021.11.20
  • Accepted : 2022.10.12
  • Published : 2022.11.10

Abstract

Tunnel convergence prediction is essential for the safe construction and design of tunnels. This study proposes five machine learning models of deep neural network (DNN), K-nearest neighbors (KNN), Gaussian process regression (GPR), support vector regression (SVR), and decision trees (DT) to predict the convergence phenomenon during or shortly after the excavation of tunnels. In this respect, a database including 650 datasets (440 for training, 110 for validation, and 100 for test) was gathered from the previously constructed tunnels. In the database, 12 effective parameters on the tunnel convergence and a target of tunnel wall convergence were considered. Both 5-fold and hold-out cross validation methods were used to analyze the predicted outcomes in the ML models. Finally, the DNN method was proposed as the most robust model. Also, to assess each parameter's contribution to the prediction problem, the backward selection method was used. The results showed that the highest and lowest impact parameters for tunnel convergence are tunnel depth and tunnel width, respectively.

Keywords

References

  1. Adoko, A.C., Jiao, Y.Y., Wu, L., Wang, H. and Wang, Z.H. (2013), "Predicting tunnel convergence using multivariate adaptive regression spline and artificial neural network", Tunn. Undergr. Sp. Tech., 38, 368-376. https://doi.org/10.1016/j.tust.2013.07.023.
  2. Aktas, G. and Ozerdem, M.S. (2020), "Displacement prediction of precast concrete under vibration using artificial neural networks", Struct. Eng. Mech., 74(4), 559-565. https://doi.org/10.12989/sem.2020.74.4.559.
  3. Adoko, A.C. and Wu, L. (2012), "Estimation of convergence of a high-speed railway tunnel in weak rocks using an adaptive neuro-fuzzy inference system (ANFIS) approach", J. Rock Mech. Geotech. Eng., 4(1), 11-18. https://doi.org/https://doi.org/10.3724/SP.J.1235.2012.00011 .
  4. Asadollahpour, E., Rahmannejad, R., Asghari, A. and Abdollahipour, A. (2014), "Back analysis of closure parameters of Panet equation and Burgers model of Babolak water tunnel conveyance", Int. J. Rock Mech. Min. Sci., 68, 159-166. https://doi.org/https://doi.org/10.1016/j.ijrmms.2014.02.017.
  5. Altman, N.S. (1992), "An introduction to kernel and nearest-neighbor nonparametric regression", The American Statistician, 46(3), 175-185. doi:10.1080/00031305.1992.10475879.
  6. Debernardi, D. and Barla, G. (2009), "New viscoplastic model for design analysis of tunnels in squeezing conditions", Rock Mech. Rock Eng., 42(2), 259. https://doi.org/10.1007/s00603-009-0174-6.
  7. Fahimifar, A., Tehrani, F.M., Hedayat, A. and Vakilzadeh, A. (2010), "Analytical solution for the excavation of circular tunnels in a visco-elastic Burger's material under hydrostatic stress field", Tunn. Undergr. Sp. Tech., 25(4), 297-304. https://doi.org/https://doi.org/10.1016/j.tust.2010.01.002.
  8. Feng, X., Jimenez, R., Zeng, P. and Senent, S. (2019), "Prediction of time-dependent tunnel convergences using a Bayesian updating approach", Tunn. Undergr. Sp. Tech., 94, 103118. https://doi.org/https://doi.org/10.1016/j.tust.2019.103118.
  9. Gonzalez el Alamo, J.A. and Jimenez, R. (2011), "Prediction of convergences in rock tunnels excavated by conventional methods", Proceedings of the 12th ISRM Congress, Beijing, China. https://doi.org/10.1201/b11646-319.
  10. Guan, Z., Jiang, Y. and Tanabashi, Y. (2009), "Rheological parameter estimation for the prediction of long-term deformations in conventional tunnelling", Tunn. Undergr. Sp. Tech., 24(3), 250-259. https://doi.org/https://doi.org/10.1016/j.tust.2008.08.001.
  11. Hajihassani, M., Abdullah, S.S., Asteris, P.G. and Armaghani, D.J. J.A.S. (2019), "A gene expression programming model for predicting tunnel convergence", Appl. Sci., 9(21), 4650. https://doi.org/10.3390/app9214650.
  12. Kaminski, B., Jakubczyk, M. and Szufel, P. (2017), "A framework for sensitivity analysis of decision trees", Central Eur. J. Operations Res., 26(1),135-159. https://doi.org/10.1007/s10100-017-0479-6. PMC 5767274.
  13. Kontogianni, V., Psimoulis, P. and Stiros, S. (2006), "What is the contribution of time-dependent deformation in tunnel convergence?", Eng. Geol., 82(4), 264-267. https://doi.org/https://doi.org/10.1016/j.enggeo.2005.11.001.
  14. Kostinakis, K.G. and Morfidis, K.E. (2020), "Optimization of the seismic performance of masonry infilled R/C buildings at the stage of design using artificial neural networks", Struct. Eng. Mech., 75(3), 295-309. https://doi.org/10.12989/sem.2020.75.3.295.
  15. Liu, X., Liu, Y., Lu, Y. and Kou, M. (2020), "Experimental and numerical study on pre-peak cyclic shear mechanism of artificial rock joints", Struct. Eng. Mech., 74(3), 407-423. https://doi.org/10.12989/sem.2020.74.3.407.
  16. Mahdevari, S., Shirzad Haghighat, H. and Torabi, S.R. (2013), "A dynamically approach based on SVM algorithm for prediction of tunnel convergence during excavation", Tunn. Undergr. Sp. Tech., 38, 59-68. https://doi.org/https://doi.org/10.1016/j.tust.2013.05.002.
  17. Mahdevari, S. and Torabi, S.R. (2012), "Prediction of tunnel convergence using Artificial Neural Networks", Tunn. Undergr. Sp. Tech., 28, 218-228. https://doi.org/https://doi.org/10.1016/j.tust.2011.11.002.
  18. Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633.
  19. Mahdevari, S., Torabi, S.R. and Monjezi, M. (2012), "Application of artificial intelligence algorithms in predicting tunnel convergence to avoid TBM jamming phenomenon", Int. J. Rock Mech. Min. Sci., 55, 33-44. https://doi.org/https://doi.org/10.1016/j.ijrmms.2012.06.005
  20. Mahmoodzadeh, A., Rashidi, S., Mohammed, A., Hama Ali, H. and Ibrahim, H. (2022). "Machine learning approaches to enable resource forecasting process of road tunnels construction", Communication Engineering and Computer Science, North America, mar. 2022. Available at: . Date accessed: 21 Sep. 2022. http://doi.org/10.24086/cocos2022/paper.718.
  21. Mahmoodzadeh, A. and Zare, S. (2016), "Probabilistic prediction of expected ground condition and construction time and costs in road tunnels", J. Rock Mech. Geotech. Eng., 8(5), 734-745. https://doi.org/https://doi.org/10.1016/j.jrmge.2016.07.001.
  22. Mahmoodzadeh, A., Mohammadi, M., Abdulhamid, S.N., Nejati, H.R., Noori, K.M.G., Ibrahim, H.H. and Hama Ali, H.F. (2021a), "Predicting construction time and cost of tunnels using Markov chain model considering opinions of experts", Tunn. Undergr. Sp. Tech., 116, 104109. https://doi.org/10.1016/j.tust.2021.104109.
  23. Mahmoodzadeh, A., Mohammadi, M., Abdulhamid, S.N., Ibrahim, H.H., Hama Ali, H.F. and Salim, S.G. (2021b), "Dynamic reduction of time and cost uncertainties in tunneling projects", Tunn. Undergr. Sp. Tech., 109, 103774. https://doi.org/10.1016/j.tust.2020.103774.
  24. Nadimi, S., Shahriar, K., Sharifzadeh, M. and Moarefvand, P. (2011), "Triaxial creep tests and back analysis of time-dependent behavior of Siah Bisheh cavern by 3-Dimensional Distinct Element Method", Tunn. Undergr. Sp. Tech., 26(1), 155-162. https://doi.org/https://doi.org/10.1016/j.tust.2010.09.002.
  25. Nomikos, P., Rahmannejad, R. and Sofianos, A. (2011), "Supported axisymmetric tunnels within linear viscoelastic burgers rocks", Rock Mech. Rock Eng., 44(5), 553-564. https://doi.org/10.1007/s00603-011-0159-0.
  26. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et. al. (2011), "Scikit-learn: Machine learning in python (2011)", J. Machine Learn.g Res., 12, 2825-2830.
  27. Quinlan, J.R. (1987), "Simplifying decision trees", Int. J. Man-Machine Studies, 27(3), 221-234. CiteSeerX 10.1.1.18.4267. doi:10.1016/S0020-7373(87)80053-6.
  28. Rafiai, H. and Moosavi, M. (2012), "An approximate ANN-based solution for convergence of lined circular tunnels in elasto-plastic rock masses with anisotropic stresses", Tunn. Undergr. Sp. Tech., 27(1), 52-59. https://doi.org/https://doi.org/10.1016/j.tust.2011.06.008
  29. Rasmussen, C.E. and Williams, C.K.I. (2016), "Gaussian processes for machine learning", The MIT Press.
  30. Sakurai, S. (1978), "Approximate time-dependent analysis of tunnel support structure considering progress of tunnel face", Int. J. Numer. Anal. Method. Geomech., 2(2), 159-175. https://doi.org/10.1002/nag.1610020205.
  31. Sharifzadeh, M., Tarifard, A. and Moridi, M.A. (2013), "Time-dependent behavior of tunnel lining in weak rock mass based on displacement back analysis method", Tunnelling and Underground Space Technology, 38, 348-356. https://doi.org/https://doi.org/10.1016/j.tust.2013.07.014
  32. Sterpi, D., and Gioda, G. (2009). "Visco-Plastic Behaviour around Advancing Tunnels in Squeezing Rock", Rock Mech. Rock Eng., 42(2), 319-339. https://doi.org/10.1007/s00603-007-0137-8.
  33. Schulz, H. and Behnke, S. (2012), "Deep Learning", Kunstl Intell 26, 357-363. https://doi.org/10.1007/s13218-012-0198-z
  34. Torabi-Kaveh, M. and Sarshari, B. (2020), "Predicting Convergence rate of Namaklan twin tunnels using machine learning methods", Arabian Journal for Science and Engineering, 45(5), 3761-3780. https://doi.org/10.1007/s13369-019-04239-1.
  35. Trinh, M.C. and Jun, H. (2021), "Stochastic vibration analysis of functionally graded beams using artificial neural networks", Struct. Eng. Mech., 78(5), 529-543. https://doi.org/10.12989/sem.2021.78.5.529.
  36. Vapnik, V.N. (2000), "The nature of statistical learning theory. New York: Springer", Edition Number: 2, ISBN 978-1-4757-3264-1. DOI: 10.1007/978-1-4757-3264-1
  37. Vu, T.M., Sulem, J., Subrin, D., Monin, N. and Lascols, J. (2013), "Anisotropic closure in squeezing rocks: The example of saint-martin-la-porte access gallery", Rock Mech. Rock Eng., 46(2), 231-246. https://doi.org/10.1007/s00603-012-0320-4.