References
- Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. http://doi.org/10.12989/anr.2018.6.1.039.
- Akgoz, B. and Civalek, O . (2013), "Buckling analysis of functionally graded microbeams based on the strain gradient theory", Acta Mechanica, 224(9), 2185-2201. https://doi.org/10.1007/s00707-013-0883-5.
- Alinia, M.M. and Ghannadpour, S.A.M. (2009), "Nonlinear analysis of pressure loaded FGM plates", Compos. Struct., 88(3), 354-359. https://doi.org/10.1016/j.compstruct.2008.04.013.
- Ansari, R., Faghih Shojaei, M., Shakouri, A.H. and Rouhi, H. (2016), "Nonlinear bending analysis of first-order shear deformable microscale plates using a strain gradient quadrilateral element", J. Comput. Nonlinear Dyn., 11(5). https://doi.org/10.1115/1.4032552.
- Ansari, R., Gholami, R., Shojaei, M.F., Mohammadi, V. and Darabi, M.A. (2015), "Size-dependent nonlinear bending and postbuckling of functionally graded Mindlin rectangular microplates considering the physical neutral plane position", Compos. Struct., 127, 87-98. https://doi.org/10.1016/j.compstruct.2015.02.082.
- Asghari, M., Rahaeifard, M., Kahrobaiyan, M.H. and Ahmadian, M.T. (2011), "The modified couple stress functionally graded Timoshenko beam formulation", Mater. Des., 32(3), 1435-1443. https://doi.org/10.1016/j.matdes.2010.08.046.
- Avey, M., Fantuzzi, N., Sofiyev, A.H. and Kuruoglu, N. (2021), "Nonlinear vibration of multilayer shell-type structural elements with double curvature consisting of CNT patterned layers within different theories", Compos. Struct., 275, 114401. https://doi.org/10.1016/j.compstruct.2021.114401.
- Bacciocchi, M., Fantuzzi, N., Luciano, R. and Tarantino, A.M. (2021), "Linear eigenvalue analysis of laminated thin plates including the strain gradient effect by means of conforming and nonconforming rectangular finite elements", Comput. Struct., 257, 106676. https://doi.org/10.1016/j.compstruc.2021.106676.
- Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279-198. http://doi.org/10.12989/anr.2018.6.3.279.
- Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.
- Eringen, A.C. (1966), "Linear theory of micropolar elasticity", J. Math. Mech., 909-923. https://www.jstor.org/stable/24901442.
- Eringen, A.C. (1967), "Theory of micropolar plates", Zeitschrift fur Angewandte Mathematik und Physik ZAMP, 18(1), 12-30. https://doi.org/10.1007/BF01593891.
- Fantuzzi, N., DENIZ, A., Kuruoglu, N. and Sofiyev, A.H. (2021), "Modeling and solution of large amplitude vibration problem of construction elements made of nanocomposites using shear deformation theory", Materials, 14(14), 3843. https://doi.org/10.3390/ma14143843.
- Fenjan, R.M., Faleh, N.M. and Ahmed, R.A. (2020), "Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nano-composites", Adv. Nano Res., 9(3), 147-156. https://doi.org/10.12989/anr.2020.9.3.147.
- Fleck, N.A., Muller, G.M., Ashby, M.F. and Hutchinson, J.W. (1994), "Strain gradient plasticity: Theory and experiment", Acta Metallurgica et Materialia, 42(2), 475-487. https://doi.org/10.1016/0956-7151(94)90502-9.
- Ghannadpour, S.A.M., Karimi, M. and Tornabene, F. (2019), "Application of plate decomposition technique in nonlinear and post-buckling analysis of functionally graded plates containing crack", Compos. Struct., 220, 158-167. https://doi.org/10.1016/j.compstruct.2019.03.025.
- Ghannadpour, S.A.M. and Moradi, F. (2019), "Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique", Adv. Nano Res., 7(5), 311-324. http://doi.org/10.12989/anr.2019.7.5.311.
- Ghannadpour, S.A.M., Moradi, F. and Tornabene, F. (2020), "Exact analytical solutions to the problem of relative postbuckling stiffness of thin nonlocal graphene sheets", Thin Wall. Struct., 151, 106712. https://doi.org/10.1016/j.tws.2020.106712.
- Ghannadpour, S.A.M., Ovesy, H.R. and Nassirnia, M. (2012), "Buckling analysis of functionally graded plates under thermal loadings using the finite strip method", Comput. Struct., 108, 93-99. https://doi.org/10.1016/j.compstruc.2012.02.011.
- Ghannadpour, S.A.M. and Shakeri, M. (2018), "Energy based collocation method to predict progressive damage behavior of imperfect composite plates under compression", Latin Am. J. Solid Struct., 15(4). https://doi.org/10.1590/1679-78254257.
- Hadjesfandiari, A.R. and Dargush, G.F. (2016), "Couple stress theories: Theoretical underpinnings and practical aspects from a new energy perspective", arXiv, 1611, 10249.
- Hassanpour, P.A., Cleghorn, W.L., Esmailzadeh, E. and Mills, J.K. (2007), "Vibration analysis of micro-machined beam-type resonators", J. Sound Vib., 308(1-2), 287-301. https://doi.org/10.1016/j.jsv.2007.07.043.
- Jena, S.K., Chakraverty, S. and Tornabene, F. (2019), "Dynamical behavior of nanobeam embedded in constant, linear, parabolic, and sinusoidal types of Winkler elastic foundation using firstorder nonlocal strain gradient model", Mater. Res. Exp., 6(8), 0850f2. https://doi.org/10.1088/2053-1591/ab2779.
- Jomehzadeh, E., Noori, H.R. and Saidi, A.R. (2011), "The sizedependent vibration analysis of micro-plates based on a modified couple stress theory", Physica E, 43(4), 877-883. https://doi.org/10.1016/j.physe.2010.11.005.
- Ke, L.L., Yang, J., Kitipornchai, S. and Bradford, M.A. (2012), "Bending, buckling and vibration of size-dependent functionally graded annular microplates", Compos. Struct., 94(11), 3250-3257. https://doi.org/10.1016/j.compstruct.2012.04.037.
- Ke, L.L., Yang, J., Kitipornchai, S. and Wang, Y.S. (2014), "Axisymmetric postbuckling analysis of size-dependent functionally graded annular microplates using the physical neutral plane", Int. J. Eng. Sci., 81, 66-81. https://doi.org/10.1016/j.ijengsci.2014.04.005.
- Koiter, W.T. (1969), "Couple-stresses in the theory of elasticity, I & II", Philos. Transact. Royal Soc. London B, 67, 17-44.
- Koizumi, M.F.G.M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
- Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
- Lazopoulos, K.A. (2009), "On bending of strain gradient elastic micro-plates", Mech. Res. Commun., 36(7), 777-783. https://doi.org/10.1016/j.mechrescom.2009.05.005.
- Mahmure, A., Sofiyev, A.H., Fantuzzi, N. and Kuruoglu, N. (2021), "Primary resonance of double-curved nanocomposite shells using nonlinear theory and multi-scales method: Modeling and analytical solution", Int. J. Nonlinear Mech., 137, 103816. https://doi.org/10.1016/j.ijnonlinmec.2021.103816.
- Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nano plate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519.
- Mindlin, R.D. (1965), "Second gradient of strain and surfacetension in linear elasticity", Int. J. Solids Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5.
- Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couplestresses in linear elasticity", Arch. Ration. Mech. Anal., 11(1), 415-448. https://doi.org/10.1007/BF00253946.
- Mohammadi, M., Saidi, A.R. and Jomehzadeh, E. (2010), "Levy solution for buckling analysis of functionally graded rectangular plates", Appl. Compos. Mater., 17(2), 81-93. https://doi.org/10.1007/s10443-009-9100-z.
- Monaco, G.T., Fantuzzi, N., Fabbrocino, F. and Luciano, R. (2021a), "Hygro-thermal vibrations and buckling of laminated nanoplates via nonlocal strain gradient theory", Compos. Struct., 262, 113337. https://doi.org/10.1016/j.compstruct.2020.113337
- Monaco, G.T., Fantuzzi, N., Fabbrocino, F. and Luciano, R. (2021b), "Trigonometric solution for the bending analysis of magneto-electro-elastic strain gradient nonlocal nanoplates in hygro-thermal environment", Mathematics, 9(5), 1-22. https://doi.org/10.3390/math9050567
- Monaco, G.T., Fantuzzi, N., Fabbrocino, F. and Luciano, R. (2021c), "Critical temperatures for vibrations and buckling of magneto-electro-elastic nonlocal strain gradient plates", Nanomaterials, 11(1), 87. https://doi.org/10.3390/nano11010087
- Movassagh, A.A. and Mahmoodi, M.J. (2013), "A micro-scale modeling of Kirchhoff plate based on modified strain-gradient elasticity theory", Eur. J. Mech. A Solids, 40, 50-59. https://doi.org/10.1016/j.euromechsol.2012.12.008.
- Nix, W.D. (1989), "Mechanical properties of thin films", Metall. Transact. A, 20(11), 2217. https://doi.org/10.1007/BF02666659.
- Ovesy, H.R., Ghannadpour, S.A.M. and Nassirnia, M. (2015), "Post-buckling analysis of rectangular plates comprising functionally graded strips in thermal environments", Comput. Struct, 147, 209-215. https://doi.org/10.1016/j.compstruc.2014.09.011.
- Papargyri-Beskou, S. and Beskos, D.E. (2008), "Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates", Arch. Appl. Mech., 78(8), 625-635. https://doi.org/10.1007/s00419-007-0166-5.
- Papargyri-Beskou, S., Giannakopoulos, A.E. and Beskos, D.E. (2010), "Variational analysis of gradient elastic flexural plates under static loading", Int. J. Solids Struct., 47(20), 2755-2766. https://doi.org/10.1016/j.ijsolstr.2010.06.003.
- Shariati, A., Barati, M.R., Ebrahimi, F. and Toghroli, A. (2020), "Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory", Adv. Nano Res., 8(3), 191-202. https://doi.org/10.12989/anr.2020.8.3.191.
- Sheng, H., Li, H., Lu, P. and Xu, H. (2010), "Free vibration analysis for micro-structures used in MEMS considering surface effects", J. Sound Vib., 329(2), 236-246. https://doi.org/10.1016/j.jsv.2009.08.035.
- Taghizadeh, M., Ovesy, H. R. and Ghannadpour, S.A.M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., 54(4), 755-769. https://doi.org/10.12989/sem.2015.54.4.755.
- Tavakolian, F., Farrokhabadi, A. and Mirzaei, M. (2017), "Pull-in instability of double clamped microbeams under dispersion forces in the presence of thermal and residual stress effects using nonlocal elasticity theory", Microsyst. Technol., 23(4), 839-848. https://doi.org/10.1007/s00542-015-2785-z.
- Thai, H.T. and Choi, D.H. (2013), "Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory", Compos. Struct., 95, 142-153. https://doi.org/10.1016/j.compstruct.2012.08.023.
- Toupin, R. (1962), "Elastic materials with couple-stresses", Arch. Ration. Mech. Anal., 11(1), 385-414. https://doi.org/10.1007/BF00253945.
- Tsiatas, G.C. (2009), "A new Kirchhoff plate model based on a modified couple stress theory", Int. J. Solid Struct., 46(13), 2757-2764. https://doi.org/10.1016/j.ijsolstr.2009.03.004.
- Tuna, M. and Trovalusci, P. (2020), "Scale dependent continuum approaches for discontinuous assemblies: 'Explicit' and 'implicit' non-local models", Mech. Res. Commun., 103, 103461. https://doi.org/10.1016/j.mechrescom.2019.103461
- Wang, B., Zhao, J. and Zhou, S. (2010), "A micro scale Timoshenko beam model based on strain gradient elasticity theory", Eur. J. Mech. A Solids, 29(4), 591-599. https://doi.org/10.1016/j.euromechsol.2009.12.005.
- Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
- Zibaei, I., Rahnama, H., Taheri-Behrooz, F. and Shokrieh, M. M. (2014), "First strain gradient elasticity solution for nanotubereinforced matrix problem", Compos. Struct., 112, 273-282. https://doi.org/10.1016/j.compstruct.2014.02.023