DOI QR코드

DOI QR Code

탄약시험장의 강재 방호구조물 적용성 분석 연구

Feasibility Study of a Corrugated Steel Protective Structure for Ammunition Test Facility

  • 한재덕 (서울과학기술대학교 국방방호공학과) ;
  • 김동희 (국방기술품질원, 서울과학기술대학교 국방방호공학과) ;
  • 김성곤 (서울과학기술대학교 국방방호공학과)
  • Han, Jae Duk (Seoul National University of Science and Technology) ;
  • Kim, Donghee (Seoul National University of Science and Technology) ;
  • Kim, Sungkon (Seoul National University of Science and Technology)
  • 투고 : 2021.11.24
  • 심사 : 2022.06.08
  • 발행 : 2022.10.01

초록

국내 탄약 시험장과 군의 포탄 사격 훈련장은 잦은 사격과 폭발 실험으로 인해 충격파와 파편 등의 유해인자가 발생한다. 이에 따라 지역 주민의 민원이 급증하고 있으며 근접한 시설물과 인명피해의 위험이 크다. 최근 건설된 탄약 시험장은 부지확보 제한에 따라 반경 300 m 이내의 좁은 지역에서 화포 사격 및 로켓 추진기관 연소시험 시설을 구축하였으나 적절한 방호구조물이 없어 시설물 피해가 누적되고 있다. 따라서 본 연구에서는 화포 사격 및 로켓추진기관 실험 간 발생하는 소음, 진동, 충격파, 열 효과 등 유해인자에 대한 정량적 데이터를 측정하고 폭발 압력 특성을 분석하여 탄약 시험장의 강재 방호구조물 적용 연구를 수행하였다.

Harmful factors such as shock waves and fragments are generated at domestic ammunition testing sites and military shell shooting training sites due to frequent shooting and explosion tests. As a result, complaints from local residents are rapidly increasing, and there is a high risk of damage to facilities and human life. The recently constructed ammunition test site built a test facility for firing artillery and rocket propulsion in a narrow area with a radius of 300 m due to site restrictions, but damage to the facility is accumulating because there is no adequate protective structure. Therefore, in this study, quantitative data on harmful factors such as noise, vibration, shock wave, and thermal effect generated between artillery firing and rocket propulsion tests were measured, and explosion pressure characteristics were analyzed to design a protective structure, and use Autodyn to protect performance. to perform verification.

키워드

과제정보

이 연구는 국토교통부 건설기술연구사업(과제번호: 19SCIP-B146646-02)의 지원의 일환으로 수행되었습니다. 본 논문은 2021 CONVENTION 논문을 수정·보완하여 작성되었습니다.

참고문헌

  1. Dash, S. M. (1993). Rocket motor plume flow field phenomenoiogy and simulation, In AGARD, Rocket Motor Plume Technology 30 p (SEE N94-15217 03-20), Science Applications International Corp., Fort Washington, PA.
  2. Denny, J. W. and Clubley, S. K. (2019). "Long-duration blast loading & response of steel column sections at different angles of incidence." Engineering Structures, Vol. 178, pp. 331-342. https://doi.org/10.1016/j.engstruct.2018.10.019
  3. Gebbeken, N. (2010). "Explosion protection-architectural design, urban planning and landscape planning" International Journal of Protective Structures, Vol. 1, No. 1.
  4. Kim, U. Y. (2002). A study on the application of steel materials for military facilities, Ministry of National Defense (in Korean).
  5. Lee, H. S. and Hong, J. H. (2016). "On the installation of shielding materials to reduce canvas noise." An Experimental Study on Korean Journal of Military Science and Technology, Vol. 19, No. 4, pp. 453 (in Korean).
  6. Luccioni, B. M., Ambrosini, R. D. and Danesiad, R. F. (2004). "Analysis of building collapse under blast loads." Engineering Structures, Vol. 26, No. 1, pp. 63-71. https://doi.org/10.1016/j.engstruct.2003.08.011
  7. Zehrt, W. and Lahoud, P. (1994). Acceptable reinforcing steel splices for blast resistant concrete structures designed in accordance with TM 5-1300, "Structures to resist the effects of accidental explosions", U.S. Army Corps of Engineers,Huntsville Division, USA.