DOI QR코드

DOI QR Code

Preparation and Characterization of Flash-Spun Fibers

플래시방사섬유의 제조와 특성 연구

  • Cho, Nam Pil (Advanced Textile R&D Department, Korea Institute of Industrial Technology) ;
  • Wee, Jae-Hyung (Advanced Textile R&D Department, Korea Institute of Industrial Technology) ;
  • Bae, Young Hwan (Advanced Textile R&D Department, Korea Institute of Industrial Technology) ;
  • Lee, Won Jun (Department of Fiber System Engineering, Dankook University) ;
  • Yeo, Sang Young (Advanced Textile R&D Department, Korea Institute of Industrial Technology)
  • 조남필 (한국생산기술연구원 융합기술연구소 섬유연구부문) ;
  • 위재형 (한국생산기술연구원 융합기술연구소 섬유연구부문) ;
  • 배영환 (한국생산기술연구원 융합기술연구소 섬유연구부문) ;
  • 이원준 (단국대학교 파이버시스템공학과) ;
  • 여상영 (한국생산기술연구원 융합기술연구소 섬유연구부문)
  • Received : 2022.09.11
  • Accepted : 2022.10.26
  • Published : 2022.10.31

Abstract

Flash-spun nonwoven has high barrier properties, so the pressure difference is higher than other nonwoven. This characteristic can be controlled by adjusting the volume of the pressure drop nozzle during the flash spinning process. To control the characteristics, flash spinning was performed by designing the volume of the pressure drop nozzle. The shape and diameter distribution characteristics of the flash-spun fibers were analyzed. To evaluate the possibility of a filtering material, the fibers were chopped to prepare a wet-laid nonwoven. Air permeability and filtration efficiency were evaluated for the prepared wet-laid nonwovens. The properties of the wet-laid nonwoven were correlated with the dispersion value of the flash spun fibers. Wet-laid nonwoven manufactured based on flash-spun fibers is expected to be applied as a filter medium because the differential pressure can be lowered through process control.

Keywords

Acknowledgement

이 논문은 산업통상자원부의 지원을 받아 수행된 연구임(과제번호 20015746).

References

  1. A. Tabah, M. Ramanan, K. B. Laupland, N. Buetti, A. Cortegiani, J. Mellinghoff, A. C. Morris, L. Camporota, N. Zappella, M. Elhadi, P. Povoa, K. Amrein, G. Vidal, L. Derde, M. Bassetti, G. Francois, N. Ssi yan kai, and J. J. D. Waele, "Personal Protective Equipment and Intensive Care Unit Healthcare Worker Safety in the COVID-19 Era (PPE-SAFE): An International Survey", J.Crit. Care., 2020, 59, 70-75. https://doi.org/10.1016/j.jcrc.2020.06.005
  2. J. V. Meerveld and Remich, "Flash Spun Plexifilamentary Strands and Sheets", US Patent, 2016/0138197A1 (2016).
  3. R. D. Anderson and J. E. Romano, "Process and Apparatus for Flash Spinning of Bibrillated Plexifilamentary Material", US Patent, 3,227,794 (1966).
  4. S. D. Yeo, I. S. Kang, and E. Kiran, "Critical Polymer Concentrations of Polyethylene Solutions in Pentane", J. Chem. Eng., 2002, 47, 571-574.
  5. S. Y. Kim, P. Purnama, and S. H. Kim, "Fabrication of Poly(Llactide) Fibers/Sheets Using Supercritical Fluid through Flash- Spinning Process", Macromol. Res., 2010, 18, 1233-1236. https://doi.org/10.1007/s13233-010-1210-9
  6. K. Liu and E. Kiran, "Pressure-Induced Phase Separation in Polymer Solutions: Kinetics of Phase Separation and Crossover from Nucleation and Growth to Spinodal Decomposition in Solutions of Polyethylene in n-Pentane", Macromolecules, 2001, 34, 3060-3068. https://doi.org/10.1021/ma000816k
  7. Y. Xiong and E. Kiran, "Kinetics of Pressure-induced Phase Separation (PIPS) in Polystyrene+Methylcyclohexane Solutions at High Pressure", Polym. J., 2000, 41, 3759-3777. https://doi.org/10.1016/S0032-3861(99)00592-3
  8. J. J. Dempsey, C.-C. Lee, and Richmond, "Process for Treating Film-Fibril Sheets", US Patent, 3,478,141 (1969).
  9. C.-C. Lee and Richmond, "Point-Bonded Jet-Softened Polyethylene Film-Fibril Sheet", US Patent, 4,910,075 (1990).
  10. H. Blades, Wilmington, and J. Rushton, "Fibrillated Strand", US Patent, 3,081,519 (1963).
  11. H. Shin and Siemionko, "Flash Spinning Process", US Patent, 5,672,307 (1997).
  12. J. J. Huang, Y. Tian, R. Wang, M. Tian, and Y. Liao, "Fabrication of Bead-on-string Polyacrylonitrile Nanofibrous Air Filters with Superior Filtration Efficiency and Ultralow Pressure Drop", Sep. Purif. Technol., 2020, 237, 116377. https://doi.org/10.1016/j.seppur.2019.116377
  13. K. M. Sim, H. S. Park, G. N. Bae, and J. H. Jung, "Antimicrobial Nanoparticle-coated Electrostatic Air Filter with High Filtration Efficiency and Low Pressure Drop", Sci. Total Environ., 2015, 533, 266-274. https://doi.org/10.1016/j.scitotenv.2015.07.003
  14. J. Wang, W. Zhao, B. Wang, G. Pei, and C. Li, "Multilevel-layerstructured Polyamide 6/poly(Trimethylene Terephthalate) Nanofibrous Membranes for Low-pressure Air Filtration", J. Appl. Polym Sci., 2017, 134, 44716.
  15. Y. Bae, J. H. Wee, M. Lee, B. J. Yeang, and S. Y. Yeo, "Air-Filter Media Characteristics of Wet-laid Nonwoven Based on HDPE Plexi-filament", Text. Color. Finish., 2021, 33, 302-308.
  16. R. Woodell, "Process for Flash Spinning Polypropylene Plexifilament", US Patent, 3,467,744 (1969).
  17. J. Kojima, M. Takenaka, Y. Nakayama, and T. Hashimoto, "Early Stage Spinodal Decomposition in Polymer Solution under High Pressure", Macromolecules, 1999, 32, 1809-1815. https://doi.org/10.1021/ma980799n
  18. E. Kiran, "Polymer Miscibility, Phase Separation, Morphological Modifications and Polymorphic Transformations in Dense Fluids", J. Supercrit. Fluids., 2009, 47, 466-483. https://doi.org/10.1016/j.supflu.2008.11.010
  19. S.-D. Yeo, "Supercritical Fluid Technology", Gyomoon, Korea, 2013, p.200.