DOI QR코드

DOI QR Code

NOTES ON (LCS)n-MANIFOLDS SATISFYING CERTAIN CONDITIONS

  • Kishor, Shyam (Department of Mathematics and Astronomy University of Lucknow) ;
  • Verma, Pushpendra (Department of Mathematics and Astronomy University of Lucknow)
  • 투고 : 2021.05.12
  • 심사 : 2022.02.08
  • 발행 : 2022.10.01

초록

The object of the present paper is to study the properties of conharmonically flat (LCS)n-manifold, special weakly Ricci symmetric and generalized Ricci recurrent (LCS)n-manifold. The existence of such a manifold is ensured by non-trivial example.

키워드

참고문헌

  1. N. Asghari and A. Taleshian, On the conharmonic curvature tensor of Kenmotsu manifolds, Thai J. Math. 12 (2014), no. 3, 525-536.
  2. M. At,ceken, On geometry of submanifolds of (LCS)n-manifolds, Int. J. Math. Math. Sci. 2012 (2012), Art. ID 304647, 11 pp. https://doi.org/10.1155/2012/304647
  3. M. At,ceken and S. K. Hui, Slant and pseudo-slant submanifolds in LCS-manifolds, Czechoslovak Math. J. 63(138) (2013), no. 1, 177-190. https://doi.org/10.1007/s10587-013-0012-6
  4. D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin, 1976.
  5. S. Chandra, S. K. Hui, and A. A. Shaikh, Second order parallel tensors and Ricci solitons on (LCS)n-manifolds, Commun. Korean Math. Soc. 30 (2015), no. 2, 123-130. https://doi.org/10.4134/CKMS.2015.30.2.123
  6. S. K. Chaubey, Trans-Sasakian manifold satisfying certain conditions, TWMS J. App. Eng. Math. 9 (2019), no. 2, 305-314.
  7. U. C. De and N. Guha, On generalized recurrent manifold, J. Nat. Acad. Math. 9 (1991), 85-92.
  8. U. C. De, N. Guha, and D. Kamilya, On generalized Ricci-recurrent manifolds, Tensor (N.S.) 56 (1995), no. 3, 312-317.
  9. S. Dey and A. Bhattacharyya, Some properties of Lorentzian α-Sasakian manifolds with respect to quarter-symmetric metric connection, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 54 (2015), no. 2, 21-4
  10. D. Ghosh, On projective recurrent spaces of second order, Acad. Roy. Belg. Bull. Cl. Sci. (5) 56 (1970), 1093-1099.
  11. S. K. Hui, On φ-pseudo symmetries of (LCS)n-manifolds, Kyungpook Math. J. 53 (2013), no. 2, 285-294. https://doi.org/10.5666/KMJ.2013.53.2.285
  12. S. K. Hui and D. Chakraborty, Some types of Ricci solitons on (LCS)n-manifold, J. Math. Sci. Adv. Appl. 37 (2016), 1-17.
  13. S. K. Hui, S. Uddin, and D. Chakraborty, Infinitesimal CL-transformations on (LCS)n-manifolds, Palest. J. Math. 6 (2017), Special Issue II, 190-195.
  14. Q. Khan, On conharmonically and special weakly Ricci symmetric Sasakian manifolds, Novi Sad J. Math. 34 (2004), no. 1, 71-77.
  15. J.-S. Kim, R. Prasad, and M. M. Tripathi, On generalized Ricci-recurrent trans-Sasakian manifolds, J. Korean Math. Soc. 39 (2002), no. 6, 953-961. https://doi.org/10.4134/JKMS.2002.39.6.953
  16. A. Lichnerowicz, Courbure, nombres de Betti, et espaces sym'etriques, in Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, 216-223, Amer. Math. Soc., Providence, RI, 1952.
  17. K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12 (1989), no. 2, 151-156.
  18. I. Mihai and R. Ro,sca, On Lorentzian P-Sasakian manifolds, in Classical analysis (Kazimierz Dolny, 1991), 155-169, World Sci. Publ., River Edge, NJ, 1992.
  19. R. S. Mishra and H. B. Pandey, On conharmonic curvature tensor, Indian J. Pure Appl. Math. 7 (1976), no. 2, 156-162.
  20. D. Narain and S. Yadav, On weak concircular symmetries of (LCS)2n+1-manifold, Glob. J. Sci. Front. Res. 12 (2012), 85-94.
  21. E. M. Patterson, Some theorems on Ricci-recurrent spaces, J. London Math. Soc. 27 (1952), 287-295. https://doi.org/10.1112/jlms/s1-27.3.287
  22. D. G. Prakasha, On Ricci η-recurrent (LCS)N-manifolds, Acta Univ. Apulensis Math. Inform. No. 24 (2010), 109-118.
  23. H. S. Ruse, A classification of K*-spaces, Proc. London Math. Soc. (2) 53 (1951), 212-229. https://doi.org/10.1112/plms/s2-53.3.212
  24. A. A. Shaikh, On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J. 43 (2003), no. 2, 305-314.
  25. A. A. Shaikh and K. K. Baishya, On concircular structure spacetimes, J. Math. Stat. 1 (2005), no. 2, 129-132.
  26. A. A. Shaikh and K. K. Baishya, On concircular structure spacetimes II, Am. J. Appl. Sci. 3 (2006), no. 4, 1790-1794.
  27. A. A. Shaikh and S. K. Hui, On generalized φ-recurrent (LCS)n-manifold, AIP Conference Proceedings, 1309, (2010), 419-429.
  28. H. Singh and Q. Khan, On special weakly symmetric Riemannian manifolds, Publ. Math. Debrecen 58 (2001), no. 3, 523-536.
  29. A. Singh, J. P. Singh, and R. Kumar, On a type of semi-generalized recurrent P-Sasakian manifolds, Facta Univ. Ser. Math. Inform. 31 (2016), no. 1, 213-225.
  30. G. T. Sreenivasa, Venkatesha, and C. S. Bagewadi, Some results on (LCS)2n+1-manifolds, Bull. Math. Anal. Appl. 1 (2009), no. 3, 64-70.
  31. Venkatesha and R. T. Naveen Kumar, Some symmetric properties on (LCS)n-manifolds, Kyungpook Math. J. 55 (2015), no. 1, 149-156. https://doi.org/10.5666/kmj.2015.55.1.149
  32. S. K. Yadav, P. K. Dwivedi, and D. Suthar, On (LCS)2n+1-manifolds satisfying certain conditions on the concircular curvature tensor, Thai J. Math. 9 (2011), no. 3, 597-603.