DOI QR코드

DOI QR Code

GENERALIZED PADOVAN SEQUENCES

  • Bravo, Jhon J. (Departamento de Matematicas Universidad del Cauca) ;
  • Herrera, Jose L. (Departamento de Matematicas Universidad del Cauca)
  • Received : 2021.11.05
  • Accepted : 2022.04.22
  • Published : 2022.10.01

Abstract

The Padovan sequence is the third-order linear recurrence (𝓟n)n≥0 defined by 𝓟n = 𝓟n-2 + 𝓟n-3 for all n ≥ 3 with initial conditions 𝓟0 = 0 and 𝓟1 = 𝓟2 = 1. In this paper, we investigate a generalization of the Padovan sequence called the k-generalized Padovan sequence which is generated by a linear recurrence sequence of order k ≥ 3. We present recurrence relations, the generalized Binet formula and different arithmetic properties for the above family of sequences.

Keywords

Acknowledgement

The first author was supported in part by Project VRI ID 5385 (Universidad del Cauca).

References

  1. A. Alahmadi, A. Altassan, F. Luca, and H. Shoaib, Products of k-Fibonacci numbers which are rep-digits, Publ. Math. Debrecen 97 (2020), no. 1-2, 101-115. https://doi.org/10.5486/pmd.2020.8725
  2. J. J. Bravo, C. A. Gomez, and F. Luca, Powers of two as sums of two k-Fibonacci numbers, Miskolc Math. Notes 17 (2016), no. 1, 85-100. https://doi.org/10.18514/MMN.2016.1505
  3. J. J. Bravo and F. Luca, On a conjecture about repdigits in k-generalized Fibonacci sequences, Publ. Math. Debrecen 82 (2013), no. 3-4, 623-639. https://doi.org/10.5486/PMD.2013.5390
  4. J. J. Bravo and F. Luca, On the largest prime factor of the k-Fibonacci numbers, Int. J. Number Theory 9 (2013), no. 5, 1351-1366. https://doi.org/10.1142/S1793042113500309
  5. M. Ddamulira, Repdigits as sums of three Padovan numbers, Bol. Soc. Mat. Mex. (3) 26 (2020), no. 2, 247-261. https://doi.org/10.1007/s40590-019-00269-9
  6. M. Ddamulira, Padovan numbers that are concatenations of two distinct repdigits, Math. Slovaca 71 (2021), no. 2, 275-284. https://doi.org/10.1515/ms-2017-0467
  7. M. Ddamulira, On the x-coordinates of Pell equations that are sums of two Padovan numbers, Bol. Soc. Mat. Mex. (3) 27 (2021), no. 1, Paper No. 4, 23 pp. https://doi.org/10.1007/s40590-021-00312-8
  8. G. P. B. Dresden and Z. Du, A simplified Binet formula for k-generalized Fibonacci numbers, J. Integer Seq. 17 (2014), no. 4, Article 14.4.7, 9 pp.
  9. A. Dubickas, K. G. Hare, and J. Jankauskas, No two non-real conjugates of a Pisot number have the same imaginary part, Math. Comp. 86 (2017), no. 304, 935-950. https://doi.org/10.1090/mcom/3103
  10. A. C. Garcia Lomeli and S. Hernandez Hernandez, Powers of two as sums of two Padovan numbers, Integers 18 (2018), Paper No. A84, 11 pp.
  11. A. C. Garcia Lomeli and S. Hernandez Hernandez, Repdigits as sums of two Padovan numbers, J. Integer Seq. 22 (2019), no. 2, art. 19.2.3, 10 pp.
  12. A. C. Garcia Lomeli and S. Hernandez Hernandez, Pillai's problem with Padovan numbers and powers of two, Rev. Colombiana Mat. 53 (2019), no. 1, 1-14.
  13. C. A. Gomez Ruiz and F. Luca, On the largest prime factor of the ratio of two generalized Fibonacci numbers, J. Number Theory 152 (2015), 182-203. https://doi.org/10.1016/j.jnt.2014.11.017
  14. F. T. Howard and C. Cooper, Some identities for r-Fibonacci numbers, Fibonacci Quart. 49 (2011), no. 3, 231-242.
  15. V. Iliopoulos, The plastic number and its generalized polynomial, Cogent Math. 2 (2015), Art. ID 1023123, 6 pp. https://doi.org/10.1080/23311835.2015.1023123
  16. F. Luca, Fibonacci and Lucas numbers with only one distinct digit, Portugal. Math. 57 (2000), no. 2, 243-254.
  17. D. Marques, On k-generalized Fibonacci numbers with only one distinct digit, Util. Math. 98 (2015), 23-31.
  18. M. Mignotte, Sur les conjugues des nombres de Pisot, C. R. Acad. Sci. Paris Ser. I Math. 298 (1984), no. 2, 21.
  19. R. Padovan, Dom Hans van der Laan: Modern Primitive, Architectura & Natura Press, Amsterdam, 1994.
  20. N. J. A. Sloane, The on-line encyclopedia of integer sequences, Ann. Math. Inform. 41 (2013), 219-234.
  21. I. Stewart, Tales of a neglected number, Sci. Amer. 274 (1996), 102-103.
  22. B. M. M. de Weger, Padua and Pisa are exponentially far apart, Publ. Mat. 41 (1997), no. 2, 631-651. https://doi.org/10.5565/PUBLMAT_41297_23