DOI QR코드

DOI QR Code

A Review on SEBS Block Copolymer based Anion Exchange Membranes for Water Electrolysis

SEBS 블록 공중합체를 기반으로 한 수전해용 음이온 교환막에 대한 총설

  • Kim, Ji Eun (Hydrogen Research Department, Korea Institute of Energy Research) ;
  • Park, Hyeonjung (Hydrogen Research Department, Korea Institute of Energy Research) ;
  • Choi, Yong Woo (Hydrogen Research Department, Korea Institute of Energy Research) ;
  • Lee, Jae Hun (Hydrogen Research Department, Korea Institute of Energy Research)
  • 김지은 (한국에너지기술연구원 수소연구단) ;
  • 박현정 (한국에너지기술연구원 수소연구단) ;
  • 최영우 (한국에너지기술연구원 수소연구단) ;
  • 이재훈 (한국에너지기술연구원 수소연구단)
  • Received : 2022.10.12
  • Accepted : 2022.10.14
  • Published : 2022.10.31

Abstract

Hydrogen energy has received much attention as a solution to the supply of renewable energy and to respond to climate change. Hydrogen is the most suitable candidate of storing unused electric power in a large-capacity long cycle. Among the technologies for producing hydrogen, water electrolysis is known as an eco-friendly hydrogen production technology that produces hydrogen without carbon dioxide generation by water splitting reaction. Membranes in water electrolysis system physically separate the anode and the cathode, but also prevent mixing of generated hydrogen and oxygen gases and facilitate ion transfer to complete circuit. In particular, the key to next-generation anion exchange membrane that can compensate for the shortcomings of conventional water electrolysis technologies is to develop high performance anion exchange membrane. Many studies are conducted to have high ion conductivity and excellent durability in an alkaline environment simultaneously, and various materials are being searched. In this review, we will discuss the research trends and points to move forward by looking at the research on anion exchange membranes based on commercial polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) block copolymers.

재생에너지의 보급과 기후변화를 대응하기 위한 해결책으로 수소에너지에 대한 관심이 늘어나고 있다. 수소는 미이용 전력을 대용량 장주기로 저장하기에 가장 적합한 수단이며 이러한 수소를 생산하는 기술 중 수전해는 물에 전기에너지를 인가하여 수소를 생산하는 친환경적 수소생산 기술로 알려져 있다. 수전해의 구성 요소 중 분리막은 음극과 양극을 물리적으로 분리할 뿐만 아니라 생성되는 수소와 산소의 섞임 현상을 방지하며 이온의 전달을 가능하게 하는 복합적인 역할을 수행한다. 특히 기존의 수전해 기술들의 단점을 보완할 수 있는 차세대 음이온 교환막 수전해에서의 핵심은 우수한 음이온 교환막을 확보하는 것이다. 높은 이온 전도성과 알칼리 환경에서 우수한 내구성을 동시에 가지려는 많은 연구들이 진행되고 있으며 다양한 소재에 대한 탐색이 이루어지고 있다. 본 총설에서는 상용 블록 공중합체인 Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS)를 기반으로 하는 음이온 교환막에 대한 연구에 대해 살펴보며 최신 연구 동향과 앞으로 나아가야할 점에 대해 논하고자 한다.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry, and Energy (MOTIE) of the Republic of Korea (Project Number: 20203030040030).

References

  1. Q. H. Zeng, Q. L. Liu, I. Broadwell, A. M. Zhu, Y. Xiong, and X. P. Tu, "Anion exchange membranes based on quaternized polystyrene-block-poly (ethylene-ran-butylene)-block-polystyrene for direct methanol alkaline fuel cells", J. Membr. Sci., 349, 237 (2010). https://doi.org/10.1016/j.memsci.2009.11.051
  2. M. A. Hickner, A. M. Herring, and E. B. Coughlin, "Anion exchange membranes: Current status and moving forward", J. Polym. Sci. Part B., 51, 1727 (2013). https://doi.org/10.1002/polb.23395
  3. J. G. Hong, B. Zhang, S. Glabman, N. Uzal, X. Dou, H. Zhang, X. Wei, and Y. Chen, "Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review", J. Memb. Sci., 486, 71-88 (2015). https://doi.org/10.1016/j.memsci.2015.02.039
  4. S. A. Grigoriev, P. Millet, S. V. Korobtsev, V. I. Porembskiy, M. Pepic, C. Etievant, C. Puyenchet, and V. N. Fateev, "Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis", Int. J. Hydrog. Energy, 34, 5986- 5991 (2009). https://doi.org/10.1016/j.ijhydene.2009.01.047
  5. W. Hu, X. Cao, F. Wang, and Y. Zhang, "A novel cathode for alkaline water electrolysis", Int. J. Hydrog. Energy, 22, 621-623 (1997).
  6. B. Eriksson, H. Grimler, A. Carlson, H. Ekstrom, R. Wreland Lindstrom, G. Lindbergh, and C. Lagergren, "Quantifying water transport in anion exchange membrane fuel cells", Int. J. Hydrog. Energy, 44, 4930-4939 (1997).
  7. I. Vincent, A. Kruger, and D. Bessarabov, "Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis", Int. J. Hydrog. Energy, 42, 10752-10761 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.069
  8. I. Vincent and D. Bessarabov, "Low cost hydrogen production by anion exchange membrane electrolysis: A review", Renew. Sust. Energ. Rev., 81, 1690-1704 (2018). https://doi.org/10.1016/j.rser.2017.05.258
  9. L. Wang and M. A. Hickner, "Low-temperature crosslinking of anion exchange membranes", Polym. Chem., 5, 2928 (2014). https://doi.org/10.1039/C3PY01490H
  10. P. Joo-Wang, R. Cheol-Hwi, and H. Gab-Jin, "Study on commercially available anion exchange membrane for alkaline water eectrolysis", J. Membr. Sci., 31, 275-281 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.4.275
  11. A. Sarsenbek and P. Rajkumar, "A review based on ion separation by ion exchange membrane", J. Membr. Sci., 32, 209-217 (2022). https://doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.4.209
  12. K. Jae-Hun, R. Seungbo, and M. Seung-Hyeon, "The fabrication of ion exchange membrane and its application to energy systems", J. Membr. Sci., 30, 79-96 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.2.79
  13. A. K. Mohanty, Y. E. Song, B. Jung, J. R. Kim, N. Kim, and H. -j. Paik, "Partially crosslinked comb-shaped PPO-based anion exchange membrane grafted with long alkyl chains: Synthesis, characterization and microbial fuel cell performance", Int. J. Hydrog. Energy, 45, 27346-27358 (2020). https://doi.org/10.1016/j.ijhydene.2020.07.093
  14. A.Y. Faid, L. Xie, A. O. Barnett, F. Seland, D. Kirk, and S. Sunde, "Effect of anion exchange ionomer content on electrode performance in AEM water electrolysis", Int. J. Hydrog. Energy, 45, 28272-28284 (2020). https://doi.org/10.1016/j.ijhydene.2020.07.202
  15. Y. -C. Cao, X. Wu, and K. Scott, "A quaternary ammonium grafted poly vinyl benzyl chloride membrane for alkaline anion exchange membrane water electrolysers with no-noble-metal catalysts", Int. J. Hydrog. Energy, 37, 9524-9528 (2012). https://doi.org/10.1016/j.ijhydene.2012.03.116
  16. L. Haeryang, and K. Tae-Hyun, "Preparation and characterization of anion exchange membrane based on crosslinked poly(2,6-dimethyl-1,4-phenylene oxide) with spacer-type conducting group", J. Membr. Sci., 27, 425-433 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.5.425
  17. A. D. Mohanty, S. E. Tignor, J. A. Krause, Y. K. Choe, and C. Bae, "Systematic alkaline stability study of polymer backbones for anion exchange membrane applications", Macromolecules, 49, 3361 (2016). https://doi.org/10.1021/acs.macromol.5b02550
  18. R. Vinodh, A. Ilakkiya, S. Elamathi, and D. Sangeetha, "A novel anion exchange membrane from polystyrene (ethylene butylene) polystyrene: Synthesis and characterization", Mater. Sci. Eng. B., 43, 167 (2010).
  19. G. -J. Hwang and H. Ohya, "Preparation of anionexchange membrane based on block copolymers: Part 1. Amination of the chloromethylated copolymers", J. Membr. Sci., 140, 195-203 (1998). https://doi.org/10.1016/S0376-7388(97)00283-4
  20. Z. Wang, J. Parrondo, and V. Ramani, "Anion exchange membranes based on polystyrene-block-poly (ethylene-ran-butylene)-block-polystyrene triblock copolymers: Cation stability and fuel cell performance", J. Electrochem. Soc., 164, F1216-F1225 (2017). https://doi.org/10.1149/2.1561712jes
  21. A. D. Mohanty, C. Y. Ryu, Y. S. Kim, and C. Bae, "Stable elastomeric anion exchange membranes based on quaternary ammonium-tethered polystyreneb-poly(ethylene-co-butylene)-b-polystyrene triblock copolymers", Macromolecules, 48, 7085-7095 (2015). https://doi.org/10.1021/acs.macromol.5b01382
  22. A. Z. Al Munsur, I. Hossain, S. Y. Nam, J. E. Chae, and T.-H. Kim, "Hydrophobic-hydrophilic comb-type quaternary ammonium-functionalized SEBS copolymers for high performance anion exchange membranes", J. Membr. Sci., 599, 117829 (2020). https://doi.org/10.1016/j.memsci.2020.117829
  23. C. X. Lin, X. L. Huang, D. Guo, Q. G. Zhang, A. M. Zhu, M. L. Ye, and Q. L. Liu, "Sidechain-type anion exchange membranes bearing pendant quaternary ammonium groups via flexible spacers for fuel cells", J. Mater. Chem. A, 4, 13938 (2016). https://doi.org/10.1039/C6TA05090E
  24. N. Li, T. Yan, Z. Li, T. Thurn-Albrecht, and W. H. Binder, "Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes", Energy Environ. Sci., 5, 7888 (2012). https://doi.org/10.1039/c2ee22050d
  25. J. Liu, X. Yan, L. Gao, L. Hu, X. Wu, Y. Dai, X. Ruan, and G. He, "Long-branched and densely functionalized anion exchange membranes for fuel cells", J. Membr. Sci., 581, 82-92 (2019) https://doi.org/10.1016/j.memsci.2019.03.046
  26. J. Y. Jeon, S. Park, J. Han, S. Maurya, A. D. Mohanty, D. Tian, N. Saikia, M. A. Hickner, C. Y. Ryu, M. E. Tuckerman, S. J. Paddison, Y. S. Kim, and C. Bae, "Synthesis of aromatic anion exchange membranes by friedel-crafts bromoalkylation and cross-linking of polystyrene block copolymers", Macromolecules, 52, 2139-2147 (2019). https://doi.org/10.1021/acs.macromol.8b02355
  27. J. Hao, X. Gao, Y. Jiang, H. Zhang, J. Luo, Z. Shao, and B. Yi, "Crosslinked high-performance anion exchange membranes based on poly(styrene-b-(ethylene-co-butylene)-b-styrene)", J. Membr. Sci., 551, 66-75 (2018). https://doi.org/10.1016/j.memsci.2018.01.033
  28. Z. Li, C. Li, C. Long, J. Sang, L. Tian, F. Wang, Z. Wang, and H. Zhu, "Elastic and durable multication-crosslinked anion exchange membrane based on poly(styrene-b-(ethylene-co-butylene)-b-styrene)", J. Polym. Sci., 58, 2181-2196 (2020). https://doi.org/10.1002/pol.20200290
  29. P. Dai, Z. -H. Mo, R. -W. Xu, S. Zhang, and Y.-X. Wu, "Cross-linked quaternized poly(styrene-b-(ethylene-co-butylene)-b-styrene) for anion exchange membrane: synthesis, characterization and properties", ACS Appl. Mater. Interfaces., 8, 20329-20341 (2016). https://doi.org/10.1021/acsami.6b04590
  30. Y. Shi, Z. Zhao, W. Liu, and C. Zhang, "Physically self-cross-linked sebs anion exchange membranes", Energy Fuels., 34, 16746-16755 (2020). https://doi.org/10.1021/acs.energyfuels.0c03017