DOI QR코드

DOI QR Code

Aqueous Synthesis and Luminescent Characteristics of Cu:ZnSe Quantum Dots by Internal Doping Method

내부 도핑 법에 의한 Cu 도핑 Cu:ZnSe 양자점의 수계 합성 및 발광 특성

  • Back, Geum Ji (Department of Next Generation Applied Sciences, Sungshin Women's University) ;
  • Hong, Hyun Seon (Department of Next Generation Applied Sciences, Sungshin Women's University)
  • 백금지 (성신여자대학교 미래응용과학학과) ;
  • 홍현선 (성신여자대학교 미래응용과학학과)
  • Received : 2022.09.26
  • Accepted : 2022.10.27
  • Published : 2022.10.28

Abstract

Cu-doped ZnSe quantum dots were successfully synthesized in an aqueous solution using an internal doping method. The effects of ligand type, CuSe synthesis temperature, and heating time on Cu-doped ZnSe synthesis were systematically investigated. Of MPA, GSH, TGA, and NAC used as ligands, MPA was the optimal ligand as determined by PL spectrum analysis. In addition, the emission wavelength was found to depend on the synthesis temperature of the internal doping core of CuSe. As the temperature increased, the doping of Cu2+ was enhanced, and the emission wavelength band was redshifted; accordingly, the emission peaks moved from blue to green (up to 550 nm). Thus, the synthesis of Cu:ZnSe using internal doping in aqueous solutions is a potential method for ecomanufacturing of color-tuned ZnSe quantum dots for display applications.

Keywords

References

  1. F. Mirnajafizadeh, D. Ramsey, S. McApline, F. Wang, P. Reece and J. A. Stride: Mater. Sci. Eng. C., 64 (2016) 167. https://doi.org/10.1016/j.msec.2016.03.061
  2. G. Xue, W. Chao, N. Lu and S. Xingguang: J. Lumin., 131 (2011) 1300. https://doi.org/10.1016/j.jlumin.2011.03.012
  3. R. Hernandez, E. Rosendo, R. Romano-trujillo, A. I. Oliva, G. Garcia and G. Nieto: Mater. Lett., 159 (2015) 229. https://doi.org/10.1016/j.matlet.2015.06.092
  4. G. Y. Lan, Y. W. Lin, Y. F. Huang and H. T. Chang: J. Mater. Chem., 17 (2007) 2661. https://doi.org/10.1039/b702469j
  5. Z. Chen, J. Chen, Q. Liang, D. Wu, Y. Zeng and B. Jiang: J. Lumin., 145 (2014) 569. https://doi.org/10.1016/j.jlumin.2013.07.071
  6. Y. G. Kim: Ceramist., 16 (2013) 42.
  7. H. Shen, H. Wang, X. Li, J. Z. Niu, H. Wang, X. Chen and L. S. Li: Dalton Trans., 47 (2009) 10534.
  8. A. Aboulaich, M. Geszke, L. Balan, J. Ghanbaja, G. Medjahdi and R. Schneider: Inorg. Chem., 49 (2010) 10940. https://doi.org/10.1021/ic101302q
  9. Y. Wu, S. Chen, Y. Weng, Y. Zhang, C. Wu, L. Sun, S. Zhang, Q. Yan, T. Guo and X. Zhou: J. Mater. Sci. Mater. Electron., 30 (2019) 21406. https://doi.org/10.1007/s10854-019-02519-y
  10. J. Mazher, S. Badwe, R. Sengar, D. Gupta and R. K. Pandey: Physica E., 16 (2003) 209. https://doi.org/10.1016/S1386-9477(02)00664-1
  11. J. F. Suyver, T. Van der Beek, S. F. Wuister, J. J. Kelly and A. Meijerink: Appl. Phys. Lett., 79 (2001) 4222. https://doi.org/10.1063/1.1428118
  12. S. Xu, C. Wang, Z. Wang, H. Zhang, J. Yang, Q. Xu, H. Shao, R. Li, W. Lei and Y. Cui: Nanotechnology., 22 (2011) 275605. https://doi.org/10.1088/0957-4484/22/27/275605
  13. S. Jana, B. B. Srivastava, S. Acharya, P. K. Santra, N. R. Jana, D. D. Sarma and N. Pradhan: Chem. Commun., 46 (2010) 2853. https://doi.org/10.1039/b925980e
  14. G. Xue, W. Chao, N. Lu and S. Xingguang: J. Lumin., 131 (2011) 1300. https://doi.org/10.1016/j.jlumin.2011.03.012
  15. C. Wang, Z. Hu, S. Xu, Y. Wang, Z. Zhao, Z. Wang and Y. Cui: Nanotechnology, 26 (2015) 305601. https://doi.org/10.1088/0957-4484/26/30/305601
  16. C. Wang, S. Xu, Z. Wang and Y. Cui: J. Phys. Chem. C., 115 (2011) 18486. https://doi.org/10.1021/jp206137f
  17. N. Pradhan and X. Peng: J. Am. Chem. Soc., 129 (2007) 3339. https://doi.org/10.1021/ja068360v
  18. S. W. Kim and M. J. Kang: Polymer Science and Technology, 23 (2012) 493.
  19. S. Xu, C. Wang, Z. Wang, H. Zhang, J. Yang, Q. Xu, H. Shao, R. Li, W. Lei and Y. Cui: Nanotechnology, 22 (2011) 275605. https://doi.org/10.1088/0957-4484/22/27/275605
  20. Z. Deng, F. L. Lie, S. Shen, I. Ghosh M. Mansuripur and A. J. Muscat: Langmuir., 25 (2009) 434. https://doi.org/10.1021/la802294e
  21. L. Sun, F. Gong, C. Zhou, H. Wang and S. Yao: Mater. Express., 5 (2015) 219. https://doi.org/10.1166/mex.2015.1234
  22. G. J. Back, H. Y. Song, M. S. Lee and H. S. Hong: J. Powder Mater., 28 (2021) 44. https://doi.org/10.4150/KPMI.2021.28.1.44
  23. H. S. Hong, M. S. Kim, E. K. Byun and Y. L. Lee: J. Crystal Growth., 535 (2020) 125523.
  24. N. Pradhan, D. Goorskey, J. Thessing and X. Peng: J. Am. Chem. Soc., 127 (2005) 17586. https://doi.org/10.1021/ja055557z
  25. Y. Wu, S.Y. Chen, Y. L. Weng, Y. A. Zhang, C. X. Wu, L. Sun, S. L. Zhang, Q. Yan, T. L. Guo and X. T. Zhou: J. Mater. Sci. Mater. Electron., 30 (2019) 21406. https://doi.org/10.1007/s10854-019-02519-y