DOI QR코드

DOI QR Code

The Effect of SnO2 Addition on Sintering Behaviors in a Titanium Oxide-Copper Oxide System

  • Lee, Ju-Won (The Center of Biomedical Materials and Biotechnology, Department of Materials Science and Engineering, Andong National University) ;
  • Oh, Kyung-Sik (The Center of Biomedical Materials and Biotechnology, Department of Materials Science and Engineering, Andong National University) ;
  • Chung, Tai-Joo (The Center of Biomedical Materials and Biotechnology, Department of Materials Science and Engineering, Andong National University) ;
  • Paek, Yeong-Kyeun (The Center of Biomedical Materials and Biotechnology, Department of Materials Science and Engineering, Andong National University)
  • Received : 2022.09.17
  • Accepted : 2022.10.21
  • Published : 2022.10.28

Abstract

The low-temperature sinterability of TiO2-CuO systems was investigated using a solid solution of SnO2. Sample powders were prepared through conventional ball milling of mixed raw powders. With the SnO2 content, the compositions of the samples were Ti1-xSnxO2-CuO(2 wt.%) in the range of x ≤ 0.08. Compared with the samples without SnO2 addition, the densification was enhanced when the samples were sintered at 900℃. The dominant mass transport mechanism seemed to be grain-boundary diffusion during heat treatment at 900℃, where active grain-boundary diffusion was responsible for the improved densification. The rapid grain growth featured by activated sintering was also obstructed with the addition of SnO2. This suggested that both CuO as an activator and SnO2 dopant synergistically reduced the sintering temperature of TiO2.

Keywords

Acknowledgement

This research was supported by a Grant from 2021 Research Funds of Andong National University.

References

  1. T. Rabe, W. A. Schiller, T. Hochheimer, C. Modes and A. Kipka: Int. J. Appl. Ceram. Technol., 2 (2005) 374. https://doi.org/10.1111/j.1744-7402.2005.02038.x
  2. C. K. Shin, Y. K. Paek and H. J. Lee: Int. J. Appl. Ceram. Technol., 3 (2006) 463. https://doi.org/10.1111/j.1744-7402.2006.02106.x
  3. J. Li, R. Fu, Y. Xu, Z. Fu and H. Su: J. Adv. Dielec., 4 (2014) 1450025. https://doi.org/10.1142/S2010135X14500258
  4. Y. K. Paek, C. K. Shin, K. S. Oh and T. J. Chung: J. Korean Ceram. Soc., 53 (2016) 682. https://doi.org/10.4191/kcers.2016.53.6.682
  5. J. Nie, J. M. Chan, M. Qin, N. Zhou and J. Luo: Acta Mater., 130 (2017) 329. https://doi.org/10.1016/j.actamat.2017.03.037
  6. E. R. Leite, J. A. Cerri, E. Longo and J. A. Varela: Ceramica, 49 (2003) 87. https://doi.org/10.1590/S0366-69132003000200005
  7. A. Maitre, D. Beyssen and R. Podor: Ceram. Int., 34 (2008) 27. https://doi.org/10.1016/j.ceramint.2006.07.008
  8. N. Dolet, J. M. Heintz, L. Rabardel, M. Onillon and J. P. Bonnet: J. Mater. Sci., 30 (1995) 365. https://doi.org/10.1007/BF00354397
  9. J. Lalande, R. Ollitrault-Fichet and P. Boch: J. Eur. Ceram. Soc., 20 (2000) 2415. https://doi.org/10.1016/S0955-2219(00)00153-9
  10. E. A. N. Simonetti, T. C. Oliveira, A. E. C. Machado, A. A. C. Silva, A. S. Santos and L. S. Cividanes: Ceram. Int., 47 (2021) 17844. https://doi.org/10.1016/j.ceramint.2021.03.189
  11. P. R. Bueno, M. R. Cassia-Santos, L. G. P. Simoes, J. W. Gomes, E. Longo and J. A. Varela: J. Am. Ceram. Soc., 85 (2002) 282.
  12. V. C. Sousa, M. R. Cassia-Santos, C. M. Barrado, M. R. D. Bomio, E. R. Leite, J. A. Varela and E. Longo: J. Mater. Sci.: Materials in Electronics, 15 (2004) 665.
  13. P. R. Bueno, E. R. Leite, L. O. S. Bulhoes, E. Longo and C. O. Paiva-Santos: J. Eur. Ceram. Soc., 23 (2003) 887. https://doi.org/10.1016/S0955-2219(02)00234-0
  14. M. F. Yan: Mater. Sci. Eng., 48 (1981) 53.
  15. J. Y. Woo, K. S. Oh, T. J. Chung, H. J. Lee and Y. K. Paek: J. Korean Ceram. Soc., 58 (2021) 219. https://doi.org/10.1007/s43207-020-00092-3