DOI QR코드

DOI QR Code

자란만 패류양식어장의 기초생산력 및 환경인자 변동 특성

Spatio-Temporal Variation Characteristics of Primary Productivity and Environmental Factors of Shellfish Mariculture in Jaran Bay, Korea

  • 이대인 (국립수산과학원 어장환경과) ;
  • 최용현 (국립수산과학원 어장환경과) ;
  • 홍석진 (국립수산과학원 어장환경과) ;
  • 김형철 (국립수산과학원 서해수산연구소 자원환경과) ;
  • 이원찬 (국립수산과학원 어장환경과)
  • Lee, Dae In (Marine Environment Research Division, National Institute of Fisheries Science) ;
  • Choi, Yong-Hyeon (Marine Environment Research Division, National Institute of Fisheries Science) ;
  • Hong, SokJin (Marine Environment Research Division, National Institute of Fisheries Science) ;
  • Kim, Hyung Chul (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Lee, Won-Chan (Marine Environment Research Division, National Institute of Fisheries Science)
  • 투고 : 2022.06.14
  • 심사 : 2022.08.29
  • 발행 : 2022.08.31

초록

본 논문은 남해안 자란만 패류양식어장에서 약 2년 동안 월별로 기초생산력, Chl. a, 영양염류, 입자유기물질과 퇴적물의 유기오염 정도 및 생화학 조성 등 주요 양식생물의 서식환경인자의 변동특성과 상관성 등을 분석하였다. 또한, 다른 연안 어장과 기초생산력을 비교하고 어장환경관리와 관련된 정책방안을 제시하였다. 월별 평균 기초생산력은 6.43~115.43 mgC m-2 hr-1 범위로 여름과 가을에 높았는데, 가막만과 마산만 보다는 낮았고, 가로림만과 서해보다는 높았으며, 대체적으로 양식장이 많이 분포한 내만은 그 변동 폭이 상대적으로 컸다. Chl. a를 구성하는 식물플랑크톤의 크기별 점유율이 시기별로 다소 차이가 있었고, 영양염의 고갈로 인한 식물플랑크톤의 생산력 제한은 거의 없었으나, 대부분 시기에 N/P비가 16 이하로 질소가 상대적으로 부족한 것으로 판단되었다. 수층 입자유기물질의 생화학적 조성은 탄수화물이 가장 높았으나, 반면 표층 퇴적물에서는 지질과 단백질 함량이 높았다. 퇴적물의 TOC와 AVS 농도는 만 안쪽에서 높았고 일부 시기에는 어장환경기준을 초과한 상태였으며, C:N 비는 평균 8.1~10.4 범위로 나타났다. 기초생산력은 Chl. a와의 상관성이 가장 높았고, 입자물질성분 중에서는 탄소보다는 질소 및 단백질과의 상관성이 높았다. 최근 5년 동안의 수층에서의 Chl. a, DIN, DIP 농도는 감소하는 경향이었지만, 반대로 퇴적물의 오염도는 증가하는 추세였다. 자란만의 연간 기초생산력 125.9 gC m-2 yr-1, 굴 양식장 면적 4.97 km2를 고려하면 연간 식물플랑크톤으로부터 생산되는 탄소량이 약 625 ton이며, 연간 굴 생산 습중량은 약 6,250 ton으로 추정되었다.

This study analyzed the spatio-temporal variation characteristics of major environmental factors such as primary productivity (PP), chlorophyll a, nutrients, sinking particle matters, and organic contamination and biochemical composition of surface sediment on a monthly basis for approximately 2 years around shellfish mariculture in Jaran Bay, Korea. In addition, PP in Jaran Bay was compared with that in other coastal areas and related policy plans were proposed. The average PP of the study area was high in summer and autumn with 6.43~115.43 mgC m-2 hr-1 range. This was lower than that in Gamak Bay and Masan Bay, whereas higher than that in Garorim Bay and the West Sea. The PP in coastal waters, where many aquaculture farms were distributed, significantly fluctuated. The different size compositions of phytoplanktons constituting chlorophyll a slightly varied by month, and little restriction existed on the productivity of phytoplanktons owing to the depletion of nutrients. Typically, the Redfield ratio was less than 16, indicating that nitrogen was the limiting factor for the growth of phytoplanktons. The biochemical composition of particulate organic matters in the water column showed the highest carbohydrates, but lipids and protein contents were high in surface sediments. The concentration of TOC and AVS of the surface sediments was high at inside of bay, and sometimes, exceeded the environmental criteria of fishing grounds. The organic C:N ratio of sediments ranged from 8.1 to 10.4 on average. PP had the highest correlation with chlorophyll a, nitrogen and protein of particle organic materials. Recently, chlorophyll a, DIN, and DIP of water column trends tended to decrease, however, the contamination of sediments increased. Considering the annual PP of 125.9 gC m-2 yr-1 and mariculture area (oyster) of 4.97 km2, the annual carbon production from phytoplanktons was estimated to be about 625 tons, and the annual total wet weight of shellfish (oyster) was estimated to be about 6,250 tons.

키워드

과제정보

이 연구는 2022년도 국립수산과학원 수산과학연구사업(R2022054)의 지원으로 수행된 연구입니다.

참고문헌

  1. Carver, C. E. A. and A. L. Mallet(1990), Estimating the carrying capacity of a coastal inlet for mussel culture, Aquaculture, Vol. 88, No. 1, pp. 39-53. https://doi.org/10.1016/0044-8486(90)90317-G
  2. Cho, Y. S., W. C. Lee, J. B. Kim, S. J. Hong, H. C. Kim, and C. S. Kim(2013), Establishment of environmental assessment using sediment total organic carbon and macrobenthic polychaete community in shellfish farms, Journal of the Korean Society of Marine Environment and Safety, Vol. 19, No. 5, pp. 430-438. https://doi.org/10.7837/kosomes.2013.19.5.430
  3. Choi, M. K., H. C. Kim, D. W. Hwang, I. S. Lee, Y. S. Kim, Y. J. Kim, and H. G. Choi(2013), Organic enrichment and pollution in surface sediments from shellfish farming in Yeoja Bay and Gangjin Bay, Korea, Korean Journal of Fisheries and Aquatic Sciences, Vol. 46, No. 4, pp. 424-436. https://doi.org/10.5657/KFAS.2013.0424
  4. Choi, M. K., I. S. Lee, C. S. Kim, H. C. Kim, and D. W. Hwang(2015), Distributions of organic matter and trace metals in surface sediments around a Manila Clam Ruditapes phillippinarum farming area in Gomso Bay, Korea, Korean Journal of Fisheries and Aquatic Sciences, Vol. 48, No. 4, pp. 555-563. https://doi.org/10.5657/KFAS.2015.0555
  5. Chung, K. H. and Y. C. Park(1988), Primary production and nitrogen regeneration by macrozooplankton in the Kyunggi Bay, Yellow Sea, The Korean Society of Oceanography, Vol, 23, No. 4, pp. 194-206.
  6. Duarte, P., R. Meneses, A. J. S Hawkins, M. Zhu, J. Fang, and J. Grant(2003), Mathematical modelling to assess the carrying capacity for multi-species culture within coastal waters, Ecological Modelling, Vol. 168, No. 1-2, pp. 109-143. https://doi.org/10.1016/S0304-3800(03)00205-9
  7. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith(1956), Colorimetric method for the determination of sugars and related substances, Analytical Chemistry, Vol. 28, No. 3, pp. 350-356. https://doi.org/10.1021/ac60111a017
  8. Eppley, R. W.(1972), Temperature and phytoplankton growth in the sea, Fishery Bulletin, Vol. 70, No. 4, pp. 1063-1085.
  9. Ferreira, J. G., A. J. S. Hawkins, and S. B. Bricker(2007), Management of productivity, environmental effects and profitability of shellfish aquaculture-the Farm Aquaculture Resource Management (FARM) model, Aquaculture, Vol. 264, No. 1-4, pp. 160-174. https://doi.org/10.1016/j.aquaculture.2006.12.017
  10. Hama, T., T. Miyazaki, Y. Ogawa, T. Iwakuma, M. Takahashi, A. Otsuki, and S. Ichimura(1983), Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope, Marine Biology, Vol. 73, pp. 31-36. https://doi.org/10.1007/BF00396282
  11. Hyland, J., L. Balthis, I. Karakassis, P. Magni, A. Petrov, J. Shine, O. Vestergaard, and R. Warwick(2005), Organic carbon content of sediments as an indicator of stress in the marine benthos, Marine Ecology Progress Series, Vol. 295, pp. 91-103. https://doi.org/10.3354/meps295091
  12. Jang, H. K., J. J. Kang, J. H. Lee, M. J. Kim, S. H. Ahn, J. Y. Jeong, M. S. Yun, I. S. Han, and S. H. Lee(2018), Recent primary production and small phytoplankton contribution in the Yellow Sea during the summer in 2016, Ocean Science Journal, Vol. 53, No. 3, pp. 509-519. https://doi.org/10.1007/s12601-018-0017-z
  13. Joo, H. S., S. H. Kim, and W. B. Lee(2002), Seasonal variation of primary productivity in Gangjin Bay, Korean Journal of Environmental Biology, Vol. 20, No. 2, pp. 146-151.
  14. Justic, D., N. N. Rabalais, R. E. Turner, and Q. Dortch(1995), Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences, Estuarine, Coastal and Shelf Science, Vol. 40, No. 3, pp. 339-356. https://doi.org/10.1016/S0272-7714(05)80014-9
  15. Kang, C. K., E. J. Choy, Y. B. Hur, and J. I. Myeong(2009), Isotopic evidence of particle-size dependent food partitioning in cocultured the sea squirt Halocynthia roretzi and Pacific oyster Crassostrea gigas, Aquatic Biology, Vol. 6, pp. 289-302. https://doi.org/10.3354/ab00126
  16. Kang, J. H., S. J. Lee, W. G. Jeong and S. M. Cho(2012), Geochemical characteristics and heavy metal pollutions in the surface sediments of oyster farms in Goseong Bay, Korea, The Korean Journal of Malacology, Vol. 28, No. 3, pp. 233-244. https://doi.org/10.9710/kjm.2012.28.3.233
  17. Kwon, H. K., H. S. Yang, Y. H. Yoon, O. I. Choi, I. H. Choi, and S. J. Oh(2015), Characteristics of marine environment and primary productivity of phytoplankton in the seaweed bed of northwestern coast of Jeju island during autumn 2014, The Sea: Journal of the Korean society of oceanography, Vol. 20, No. 4, pp. 180-191.
  18. Lee, B. D., H. K. Kang, and Y. J. Kang(1991), Primary production in the oyster farming bay, Korean Journal of Fisheries and Aquatic Sciences, Vol. 24, No. 1, pp. 39-51.
  19. Lee, D. I., H. C. Kim, and W. C. Lee(2022), Analysis of environmental improvement and policy proposal according to mariculture sediment purification and maintenance projects, Journal of Korean Society Marine Environment Energy, Vol. 25, No. 1, pp. 53-62. https://doi.org/10.7846/JKOSMEE.2022.25.1.53
  20. Lee, J. H., J. J. Kang, H. K. Jang, N. E. Jo, D. B. Lee, M. S. Yun, and S. H. Lee(2020a) Major controlling factors for spatio-temporal variations in the macromolecular composition and primary production by phytoplankton in Garolim and Asan bays in the Yellow Sea, Regional Studies in Marine Science, Vol. 36.
  21. Lee, J. H., H. C. Kim, T. H. Lee, W. C. Lee, J. J. Kang, N. E. Jo, D. B. Lee, K. W. Kim, J. O. Min, S. C. Kang, and S. H. Lee(2018), Monthly variations in the intracellular nutrient pools of phytoplankton in Jaran Bay, Korea, Journal of Coastal Research, Vol, No. 85, pp. 331-335.
  22. Lee, J. H., W. C. Lee, H. C. Kim, N. E. Jo, H. K. Jang, J. J. Kang, D. B. Lee, K. W. Kim, and S. H. Lee(2020b), Transparent Exopolymer Particle (TEPs) Dynamics and Contribution to Particulate Organic Carbon (POC) in Jaran Bay, Korea, Water, Vol. 12, No. 4, pp. 1057. https://doi.org/10.3390/w12041057
  23. Lee, J. H., W. C. Lee, H. C. Kim, N. E. Jo, K. W. Kim, D. B. Lee, J. J. Kang, B. R. Sim, J. I. Kwon, and S. H. Lee(2020c), Temporal and spatial variations of the biochemical composition of phytoplankton and potential food material (FM) in Jaran Bay, South Korea, Water, Vol. 12, No. 11, 3093. https://doi.org/10.3390/w12113093
  24. Lee, M. J., D. S. Kim, Y. O. Kim, M. H. Sohn, C. H. Moon, and S. H. Baek(2016a), Seasonal phytoplankton growth and distribution pattern by environmental factor changes in inner and outer bay of Ulsan, Korea, The Sea: Journal of the Korean society of oceanography, Vol. 21, No. 1, pp. 24-35.
  25. Lee, S. J., W. G. Jeong, S. M. Cho, and J. N. Kwon(2016b), Estimation of carrying capacity by food availability for farming oysters in Goseong Bay, Korea, The Korean Journal of Malacology , Vol. 32, No. 2, pp. 83-93. https://doi.org/10.9710/kjm.2016.32.2.83
  26. Lohrenz, S. E., D. A. Wiesenburg, I. P. DePalma, K. S. Johnson and D. E. Gustafson Jr.(1988), Interrelationships among primary production, chlorophyll and environmental conditions in frontal regions of the western Mediterranean Sea, Deep Sea Research Part A, Oceanographic Research Paper, Vol. 35, No. 5, pp. 793-810. https://doi.org/10.1016/0198-0149(88)90031-3
  27. Lorenzen, C. J.(1963), Diurnal variation in photosynthetic activity of natural phytoplankton populations, Limnology and Oceanography, Vol. 8, No. 1, pp. 56-62. https://doi.org/10.4319/lo.1963.8.1.0056
  28. Lowry, O. M., N. I. Rosebrough, A. L. Farrand, and R. J. Randall(1951), Protein measurement with the folin phenol reagent, Journal of Biological Chemistry, Vol. 193, No. 1, pp. 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
  29. Marsh, J. B. and D. B. Weinstein(1966), Simple charring method for determination of lipids, Journal of Lipid, Vol. 7, pp. 574-576. https://doi.org/10.1016/S0022-2275(20)39274-9
  30. MOF(Ministry of Oceans and Fisheries)(2013), Marine environment standard methods, Ministry of Oceans and Fisheries, p. 525.
  31. MOF(Ministry of Oceans and Fisheries)(2017), Fisheries environmental criteria, Notification No. 2017-109 of the Ministry of Oceans and Fisheries.
  32. Muller, P. J.(1977), CN ratios in Pacific deep-sea sediments: Effect of inorganic ammonium and organic nitrogen compounds sorbed by clays, Geochimica et Cosmochimica Acta, Vol. 41, No. 6, pp. 765-776. https://doi.org/10.1016/0016-7037(77)90047-3
  33. NFRDI(National Fisheries Research & Development Institute) (2009), The first survey report of marine culture grounds, p. 245.
  34. NFRDI(National Fisheries Research & Development Institute) (2010), The 2nd survey report of marine culture grounds, p. 443.
  35. NFRDI(National Fisheries Research & Development Institute) (2012), The 4th survey report of marine culture grounds, p. 377.
  36. NFRDI(National Fisheries Research & Development Institute) (2013), The 5th survey report of marine culture grounds, p. 365.
  37. NFRDI(National Fisheries Research & Development Institute) (2014), The estimating carrying capacity of marine culture grounds, p. 373.
  38. NIFS(National Institute of Fisheries Science)(2022), The final report of environmental management project for aquaculture farm, p. 284.
  39. Park, J. S., H. C. Kim, W. J. Choi, W. C. Lee, and C. K. Park(2002), Estimating the carrying capacity of a coastal bay for oyster culture - Estimating a food supply to oysters using and eco-hydrodynamic model in Geoje-Hansan Bay, Korean Journal of Fisheries and Aquatic Sciences, Vol. 35, No. 4, pp. 395-407. https://doi.org/10.5657/KFAS.2002.35.4.395
  40. Park, M. O. and J. S. Park(1997), HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Journal of the Korean society of Oceanography, Vol. 32, No. 1, pp. 46-55.
  41. PNU(Pusan National University)(2017), The survey of modelling factors for estimation of mariculture carrying capacity in Jaran Bay(II), p. 161.
  42. Poklington, R. and J. D. Leonard(1979), Terrigenous organic matter in sediments of the St. Lawrence Estuary and the Saguenay Fjord, Journal of the Fisheries Research Board of Canada, Vol. 36, No. 10, pp. 1250-1255. https://doi.org/10.1139/f79-179
  43. Rossi, F. and C. Lardicci(2002), Role of the nutritive value of sediment in regulating population dynamics of the deposit-feeding polychaete Streblospio shrubsolii, Marine Biology, Vol. 140, No. 6, pp. 1129-1138. https://doi.org/10.1007/s00227-001-0768-3
  44. Tover, A., C. Moreno, M. P. Manuel-Vez, and M. Garcia-Vargas(2000), Environmental implications of intensive marine aquaculture in earthen ponds, Marine Pollution Bulletin, Vol. 40, No. 11, pp. 981-988. https://doi.org/10.1016/S0025-326X(00)00040-0
  45. Yokoyama, H., M. Inoue, and K. Abo(2004), Estimation of the assimilative capacity of fish-farm environments based on the current velocity measured by plaster balls, Aquaculture, Vol. 240, No. 1-4, pp. 233-247. https://doi.org/10.1016/j.aquaculture.2004.06.018
  46. Widdows, J., P. Fieth, and C. M. Worrall(1979), Relationships between seston, available food and feeding activity in the common mussel Mytilus edulis, Marine Biology, Vol. 50, pp. 195-207. https://doi.org/10.1007/BF00394201