DOI QR코드

DOI QR Code

Evaluation of Compaction Quality using High-resolution Terrain Factor and Soil Moisture

고해상 지형정보와 토양수분을 활용한 다짐도 평가

  • Kim, Sung-Wook (Geo-information Research Group Co. Ltd.) ;
  • Go, Daehong (Geo-information Research Group Co. Ltd.) ;
  • Lee, Yeong-Jae (Geo-information Research Group Co. Ltd.) ;
  • Choi, Eun-Kyeong (Geo-information Research Group Co. Ltd.) ;
  • Kim, Jin-Young (Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Ji-Sun (Korea Institute of Civil Engineering and Building Technology) ;
  • Cho, Jin-Woo (Korea Institute of Civil Engineering and Building Technology)
  • 김성욱 ((주)지아이 지반정보연구소) ;
  • 고대홍 ((주)지아이 지반정보연구소) ;
  • 이영재 ((주)지아이 지반정보연구소) ;
  • 최은경 ((주)지아이 지반정보연구소) ;
  • 김진영 (한국건설기술연구원) ;
  • 김지선 (한국건설기술연구원) ;
  • 조진우 (한국건설기술연구원)
  • Received : 2022.09.28
  • Accepted : 2022.10.20
  • Published : 2022.10.31

Abstract

In this study, a field study was conducted to investigate the relationship between high-resolution remote images and the volumetric moisture, and the number of compaction. Changes in the shape of the surface and soil moisture content were observed and correlated with the number of compactions using roller equipment. As the compaction is repeated, the surface is flattened and the terrain curvature decreases and converges to zero. In particular, the tangential curvature changes as the number of compactions increase. Due to soil compaction, the vegetation index changed from a positive to a negative value, and most of the test site area was homogenized with a negative index. This suggests a decrease in porosity and an increase in volumetric water content associated with increasing soil compaction. Soil moisture, measured using a frequency domain reflectometry(FDR) sensor, tends to increase proportionately with the number of vibration compactions, but the correlation between the number of compactions and soil moisture is unclear. This study suggests that while it is necessary to consider the reproducibility of the experiments performed, the compaction quality of the soil can be evaluated using high-resolution terrain factors and soil moisture.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 22SMIP-A157130-03).

References

  1. Bae, B. S., Choi, W. J., Han, G. H., Han, K. H. Yoo, S. H., Ro, H. M., 2003, Calculation of bulk and solution electrical conductivity of soil using time domain reflectometry measurements, J. Korean Soc. Soil Sci. Fert., 36, 1-7(in korean with English abstract).
  2. Blonquist Jr. J. M., Jones, S. B., Robinson, D. A., 2006, Precise irrigation scheduling for turfgrass using a subsurface electromagnetic soil moisture sensor, Agric. Water Manag., 84, 153-165. https://doi.org/10.1016/j.agwat.2006.01.014
  3. Canto, G., Tejada, P. J., Munoz, J. C., Sobrino, J. A., Soriano, M. A., Fereres, E., Vega, V., Pastor, M., 2007, Monitoring yield and fruit quality parameters in open-canopy tree crops under water stress. Implications for ASTER, Remote Sens. Environ., 107, 455-470. https://doi.org/10.1016/j.rse.2006.09.014
  4. Cho, S. M., 2002, Method for evaluating the degree of compaction of road embankment, Pavement Engineers, 4(4), 41-45 (in korean).
  5. Choi, E. K., Kim, S. W., Lee, Y. C., Lee, K. H., Kim, I. S., 2013, Analyzing the disaster vulnerability of Mt. Baekdusan Area using terrain factors, J. Korean Earth Sci. Soc., 34(7), 605-614. https://doi.org/10.5467/JKESS.2013.34.7.605
  6. Choi, Y. W., You, J. H., Cho. G. S., 2015, Accuracy analysis of UAV data processing using DPW, Journal of the Korean Society for Geospatial Information Science, 23(4), 3-10. https://doi.org/10.7319/kogsis.2015.23.4.003
  7. Coners, H., Leuschner, C., 2005, In situ measurement of fine root water absorption in three temperate tree species-Temporal variability and control by soil and atmospheric factors, Basic Appl Ecol., 6, 395-405. https://doi.org/10.1016/j.baae.2004.12.003
  8. Flynn, K. F., Chapra, S. C., 2014, Remote Sensing of submerged aquatic vegetation in a shallow Non-turbid river using an unmanned aerial vehicle, Remote Sens., 6, 12815-12836. https://doi.org/10.3390/rs61212815
  9. Galvez, J. F., Simmonds, L. P., 2006, Monitoring and modelling the three-dimensional flow of water under drip irrigation, Agric. Water Manag., 83, 197-208. https://doi.org/10.1016/j.agwat.2005.11.008
  10. Gong, D., Kang, S., Zhang, L., Du, T., Yao, L., 2006, A Two dimensional model of root water uptake for single apple trees and its verification with sap flow and soil water content measurements, Agric. Water Manag., 83, 119-129. https://doi.org/10.1016/j.agwat.2005.10.005
  11. Gwak, Y. S., Kim, S. H., 2012, Soil Evaporation Evaluation Using Soil Moisture Measurements at a Hillslope on a Mountainous Forest, J. Korea Water Resour. Assoc., 45(6), 557-568. https://doi.org/10.3741/JKWRA.2012.45.6.557
  12. Han, J. Y., Kim, S. H., Kim, N. W., Kim, H. J., 2007, The Development and Application of the Quasi-dynamic Wetness Index and the Dynamic Wetness Index, J. Korea Water Resour. Assoc., 36(6), 961-969.
  13. Huete, A. R., 1988, A Soil-adjusted vegetation index(SAVI), Remote Sens. Environ., 25(3), 259-309.
  14. Huete, A. R., Liu, H. Q., 1994, An Error and sensitivity analysis of the atmosphericand soil-correcting variants of the NDVI for the MODIS-EOS, IEEE Trans Geosci Remote., 32(4), 897-905. https://doi.org/10.1109/36.298018
  15. Hur, S. O., Ha, S. K., Kim, J. G., 2009, Verification of TDR and FDR sensors for volumetric soil water content measurement in sandy loam soil, Korean J. Soil Sci. Fert., 42(2), 110-116.
  16. Jeong, S. H., Choi, Y. W., Cho, G. S., 2018, Basic data investigation method of crop insurance using spatial information based on UAV, Journal of the Korean Society for Geospatial Information Science, 26(3), 61-68. https://doi.org/10.7319/kogsis.2018.26.3.061
  17. Kim, S. W., Choi, S., Choi, E. K., Lee, Y. J., Go, D., Lee, K. H., 2021, Evaluation of soil compaction using gravity field interpretation and UAV-based remote sensing information, Econ. Environ. Geol., 31(3), 283-293(in Korean with English abstract).
  18. Korea Institute of Construction Technology, 2018, Technical Demand Study for Automation of Smart Earthwork to Improve Construction Productivity (KICT 2018-088).
  19. Lee, G. S., Kim, S. W., Hamm, S. Y., Lee, K. H., 2016, Computation of actual evapotranspiration using drone based remotely sensed information: preliminary test for a drought index, Journal of environmental science international, 25(12), 1653-1660. https://doi.org/10.5322/JESI.2016.25.12.1653
  20. Lee, G. S., Choi, Y. W., 2019, Analysis of cropland spectral properties and vegetation index using UAV, Journal of the Korean Association of Geographic Information Studies, 22(4), 86-101. https://doi.org/10.11108/KAGIS.2019.22.4.086
  21. McCann, I., Kee, E., Adkins, J., Ernest, E., Ernest, J., 2007, Effect of irrigation rate on yield of drip-irrigated seedless watermelon in a humid region, Scientia Horticulturae, 113, 155-161. https://doi.org/10.1016/j.scienta.2007.03.008
  22. Mitasova, H., Hofierka, J., 1993, Interpolation by regularized spline with tension: II. Application to terrain modeling and surface geometry analysis, Math. Geol., 25, 657-669. https://doi.org/10.1007/BF00893172
  23. Pajares, G., 2015, Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs), Photogramm Eng Remote Sensing., 81(4), 281-329. https://doi.org/10.14358/PERS.81.4.281
  24. Rouse, J, W., Haas, R. H., Schell, J. A., Deering, D. W., 1974, Monitoring Vegetation Systems in the Great Plains with ERTS, Proceedings, Third Earth Resources Technology Satellite-1 Symposium, Volume 1: Technical Presentations, section A., 309-317.
  25. Su, T. C., Chou, H. T., 2015, Application of multispectral sensors carried on unmanned aerial vehicle(UAV) to trophic state mapping of small reservoirs: A case study of Tain-Pu reservoir in Kinmen, Taiwan, Remote Sens., 7(8), 10078-10097. https://doi.org/10.3390/rs70810078
  26. Sumon, D., Saleh, T., Jacob, S., 2017, Understanding Soil Water Content and Thresholds for Irrigation Management, Oklahoma cooperative extension service, BAE-1537.
  27. Thompson, R. B., Gallardo, M., Valdez, L. C., Fernandez, M. D., 2007, Using plant water status to define threshold values for irrigation management of vegetable crops using soil moisture sensors, Agric. Water Manag., 88, 147-158. https://doi.org/10.1016/j.agwat.2006.10.007
  28. Watanabea, Y., Kawaharab, Y., 2016, UAV photogrammetry for monitoring changes in river topography and vegetation, Procedia Eng., 154, 317-325. https://doi.org/10.1016/j.proeng.2016.07.482
  29. Wilson, J. P., Gallant, J. C., 2000, Terrain Analysis: Principles and Applications, ISBN: 978-0-471-32188-0, Wiley.
  30. Zaman, B., Jensen, A., Clemens, S. R., McKee, M., 2014, Retrieval of spectral reflectance of high resolution multispectral imagery acquired with an autonomous unmanned aerial vehicle, Photogramm Eng Remote Sensing., 80(12), 1139-1150. https://doi.org/10.14358/PERS.80.12.1139