DOI QR코드

DOI QR Code

Enhanced CO2 electrocatalytic conversion via surface treatment employing low temperature plasma

플라즈마 표면처리를 통한 CO2 전기화학적 전환 촉매성능 개선

  • Choi, Yong-Wook (Advanced Energy Materials and Components R&D Group, Korean Institute of Industrial Technology (KITECH))
  • 최용욱 (한국생산기술연구원 에너지소재부품연구그룹)
  • Received : 2022.10.15
  • Accepted : 2022.10.25
  • Published : 2022.10.31

Abstract

CO2 electroreduction is considered as a means to overcome climate change by converting CO2 into value-added chemicals and liquid fuels. Although numerous researchers have screened versatile metal for the use of electrodes, and looked into the reaction mechanism, it is still required to develop highly enhanced electrocatalyst for CO2 reduction to reach beyond lab-scale. Plasma treatment applying onto the surface of meal electrodes could improve activity, selectivity and stability of the electrocatalysts. This review highlights the effect of plasma pretreatment, and provides insight to design suitable CO2 electrocatalyst.

Keywords

Acknowledgement

본 논문은 한국생산기술연구원 기본사업 "해수담수/수전해를 이용한 그린수소 생산시스템 및 핵심 부품 개발(3/6) (KITECH JA-22-0006)"의 지원으로 수행한 연구입니다.

References

  1. Y. Hori, Electrochemical CO2 reduction on metal electrodes, Mod. Asp. Electrochem., (2008) 89-189.
  2. M. B. Kale, R. A. Borse, A. G. Abdelkader Mohamed, Y. Wang, Electrocatalysts by electrodeposition: recent advances, synthesis methods, and applications in energy conversion, Adv. Funct. Mater., 31 (2021) 2101313. https://doi.org/10.1002/adfm.202101313
  3. Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Norskov, T. F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science, 355 (2017) eaad4998. https://doi.org/10.1126/science.aad4998
  4. H. Mai, T. C. Le, D. Chen, D. A. Winkler, R. A. Caruso, Machine learning for electrocatalyst and photocatalyst design and discovery, Chem. Rev., 122 (2022) 13478-13515. https://doi.org/10.1021/acs.chemrev.2c00061
  5. W. Kuckshinrichs, T. Ketelaer, J. C. Koj, Economic analysis of improved alkaline water electrolysis, Front. Energy Res., 5 (2017) 1-13.
  6. A. Vazhayil, L. Vazhayal, J. Thomas, S. C. Ashok, N. Thomas, A comprehensive review on the recent developments in transition metal-based electrocatalysts for oxygen evolution reaction, Appl. Surf. Sci. Adv., 6 (2021) 100184. https://doi.org/10.1016/j.apsadv.2021.100184
  7. Z. Wang, Y. Zhang, E. C. Neyts, X. Cao, X. Zhang, B. W. L. Jang, C. Liu, Catalyst preparation with plasmas: how does It work?, ACS Catal., 8 (2018) 2093-2110. https://doi.org/10.1021/acscatal.7b03723
  8. H. Mistry, F. Behafarid, R. Reske, A. S. Varela, P. Strasser, B. Roldan Cuenya, Tuning catalytic selectivity at the mesoscale via interparticle interactions, ACS Catal., 6 (2016) 1075-1080. https://doi.org/10.1021/acscatal.5b02202
  9. H. Mistry, R. Reske, Z. Zeng, Z. J. Zhao, J. Greeley, P. Strasser, B. R. Cuenya, Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles, J. Am. Chem. Soc., 136 (2014) 16473-16476. https://doi.org/10.1021/ja508879j
  10. Q. Yu, C. Guo, J. Ge, Y. Zhao, Q. Liu, P. Gao, J. Xiao, H. Li, Morphology controlling of silver by plasma engineering for electrocatalytic carbon dioxide reduction, J. Power Sources., 453 (2020) 227846. https://doi.org/10.1016/j.jpowsour.2020.227846
  11. S. Popovic, M. Smiljanic, P. Jovanovic, J. Vavra, R. Buonsanti, N. Hodnik, Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction, Angew. Chemie., 132 (2020) 14844-14854. https://doi.org/10.1002/ange.202000617
  12. A. Bagger, W. Ju, A. S. Varela, P. Strasser, J. Rossmeisl, Electrochemical CO2 reduction: A classification problem, ChemPhysChem., 18 (2017) 3266-3273. https://doi.org/10.1002/cphc.201700736
  13. R. M. Aran-Ais, R. Rizo, P. Grosse, G. Algara-Siller, K. Dembele, M. Plodinec, T. Lunkenbein, S. W. Chee, B. R. Cuenya, Imaging electrochemically synthesized Cu2O cubes and their morphological evolution under conditions relevant to CO2 electroreduction, Nat. Commun., 11 (2020) 3489. https://doi.org/10.1038/s41467-020-17220-6
  14. L. Zaza, K. Rossi, R. Buonsanti, Well-defined copper-based nanocatalysts for selective electrochemical reduction of CO2 to C2 Products, ACS Energy Lett., 7 (2022) 1284-1291. https://doi.org/10.1021/acsenergylett.2c00035
  15. G. H. Simon, C. S. Kley, B. Roldan Cuenya, Potential-dependent morphology of copper catalysts during CO2 electroreduction revealed by in situ atomic force microscopy, Angew. Chemie Int. Ed., 60 (2021) 2561-2568. https://doi.org/10.1002/anie.202010449
  16. S. Lee, D. Kim, J. Lee, Electrocatalytic production of C3-C4 compounds by conversion of CO2 on a chloride-induced Bi-phasic Cu2O-Cu catalyst, Angew. Chemie - Int. Ed., 54 (2015) 14701-14705. https://doi.org/10.1002/anie.201505730
  17. L. Dai, Q. Qin, P. Wang, X. Zhao, C. Hu, P. Liu, R. Qin, M. Chen, D. Ou, C. Xu, S. Mo, B. Wu, G. Fu, P. Zhang, N. Zheng, Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide, Sci. Adv., 3 (2017) e1701069. https://doi.org/10.1126/sciadv.1701069
  18. S. Ahn, K. Klyukin, R. J. Wakeham, J. A. Rudd, A. R. Lewis, S. Alexander, F. Carla, V. Alexandrov, E. Andreoli, Poly-amide modified copper foam electrodes for enhanced electrochemical reduction of carbon dioxide, ACS Catal., 8 (2018) 4132-4142. https://doi.org/10.1021/acscatal.7b04347
  19. H. M. Jeong, Y. Kwon, J. H. Won, Y. Lum, M. Cheng, K. H. Kim, M. H. Gordon, J. K. Kang, Atomic-scale spacing between Copper Facets for the Electrochemical between copper facets for the electrochemical reduction of carbon dioxide, Adv. Energy Mater., 10 (2020) 1903423. https://doi.org/10.1002/aenm.201903423
  20. S. H. Lee, J. C. Lin, M. Farmand, A. T. Landers, J. T. Feaster, J. E. Aviles Acosta, J. W. Beeman, Y. Ye, J. Yano, A. Mehta, R. C. Davis, T. F. Jaramillo, C. Hahn, W .S. Drisdell, Oxidation state and surface reconstruction of Cu under CO2 reduction conditions from in situ X-ray characterization, J. Am. Chem. Soc., 143 (2021) 588-592. https://doi.org/10.1021/jacs.0c10017
  21. M. Choi, S. Bong, J. W. Kim, J. Lee, Formation of 1-Butanol from CO2 without *CO Dimerization on a Phosphorus-Rich Copper Cathode, ACS Energy Lett., 6 (2021) 2090-2095. https://doi.org/10.1021/acsenergylett.1c00723
  22. A. Wuttig, Y. Yoon, J. Ryu, Y. Surendranath, Bicarbonate is not a general acid in Aucatalyzed CO2 electroreduction, J. Am. Chem. Soc., 139 (2017) 17109-17113. https://doi.org/10.1021/jacs.7b08345
  23. M. Moura de Salles Pupo, R. Kortlever, Electrolyte effects on the electrochemical reduction of CO2, ChemPhysChem., 20 (2019) 2926-2935. https://doi.org/10.1002/cphc.201900680
  24. J. E. Huang, F. Li, A. Ozden, A. Sedighian Rasouli, F. P. Garcia de Arquer, S. Liu, S. Zhang, M. Luo, X. Wang, Y. Lum, Y. Xu, K. Bertens, R. K. Miao, C. T. Dinh, D. Sinton, E. H. Sargent, CO2 electrolysis to multicarbon products in strong acid, Science (80-. )., 372 (2021) 1074-1078. https://doi.org/10.1126/science.abg6582
  25. J. Li, Y. Kuang, Y. Meng, X. Tian, W. H. Hung, X. Zhang, A. Li, M. Xu, W. Zhou, C. S. Ku, C. Y. Chiang, G. Zhu, J. Guo, X. Sun, H. Dai, Electroreduction of CO2 to formate on a copper-based electrocatalyst at high pressures with high energy conversion efficiency, J. Am. Chem. Soc., 142 (2020) 7276-7282. https://doi.org/10.1021/jacs.0c00122
  26. S. T. Ahn, I. Abu-Baker, G. T. R. Palmore, Electroreduction of CO2 on polycrystalline copper: effect of temperature on product selectivity, Catal. Today. ,288 (2017) 24-29. https://doi.org/10.1016/j.cattod.2016.09.028
  27. A. Senocrate, C. Battaglia, Electrochemical CO2 reduction at room temperature: Status and perspectives, J. Energy Storage., 36 (2021) 102373. https://doi.org/10.1016/j.est.2021.102373
  28. H. S. Jeon, S. Kunze, F. Scholten, B. Roldan Cuenya, Prism-shaped Cu nanocatalysts for electrochemical CO2 reduction to ethylene, ACS Catal., 8 (2018) 531-535. https://doi.org/10.1021/acscatal.7b02959
  29. Y. Lum, B. Yue, P. Lobaccaro, A. T. Bell, J. W. Ager, Optimizing C-C coupling on oxide-derived copper catalysts for electrochemical CO2 reduction, J. Phys. Chem. C., 121 (2017) 14191-14203. https://doi.org/10.1021/acs.jpcc.7b03673
  30. Q. Zhu, X. Sun, D. Yang, J. Ma, X. Kang, L. Zheng, J. Zhang, Z. Wu, B. Han, Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex, Nat. Commun., 10 (2019) 3851. https://doi.org/10.1038/s41467-019-11599-7
  31. P. Qi, L. Zhao, Z. Deng, H. Sun, H. Li, Q. Liu, X. Li, Y. Lian, J. Cheng, J. Guo, Y. Cui, Y. Peng, Revisiting the grain and valence effect of oxide-derived copper on electrocatalytic CO2 reduction using single crystal Cu(111) foils, J. Phys. Chem. Lett., 12 (2021) 3941-3950. https://doi.org/10.1021/acs.jpclett.1c00588
  32. B. R. Cuenya, Metal nanoparticle catalysts beginning to shape-up, Acc. Chem. Res., 46 (2013) 1682-1691. https://doi.org/10.1021/ar300226p
  33. L. K. Ono, B. Roldan Cuenya, Formation and thermal stability of Au2O3 on gold nanoparticles: size and support effects, J. Phys. Chem. C, 112 (2008) 4676-4686. https://doi.org/10.1021/jp711277u
  34. H. Mistry, A. S. Varela, C. S. Bonifacio, I. Zegkinoglou, I. Sinev, Y. W. Choi, K. Kisslinger, E. A. Stach, J. C. Yang, P. Strasser, B. Roldan Cuenya, Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene, Nat. Commun., 7 (2016) 12123. https://doi.org/10.1038/ncomms12123
  35. D. Gao, I. Zegkinoglou, N. J. Divins, F. Scholten, I. Sinev, P. Grosse, B. Roldan Cuenya, Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols, ACS Nano., 11 (2017) 4825-4831. https://doi.org/10.1021/acsnano.7b01257
  36. F. Scholten, I. Sinev, M. Bernal, B. Roldan Cuenya, Plasma-modified dendritic Cu catalyst for CO2 electroreduction, ACS Catal., 9 (2019) 5496-5502. https://doi.org/10.1021/acscatal.9b00483
  37. B. A. Rosen, A. S. Khojin, M. R. Thorson, W. Zhu, D. T. Whipple, P. J. Kenis, R. I. Masel, Ionic liquid-mediated selective conversion of CO(2) to CO at low overpotentials, Science, 334 (2011) 643-644. https://doi.org/10.1126/science.1209786
  38. M. Asadi, K. Kim, C. Liu, A.V. Addepalli, P. Abbasi, P. Yasaei, P. Phillips, A. Behranginia, J. M. Cerrato, R. Haasch, P. Zapol, B. Kumar, R. F. Klie, J. Abiade, L. A. Curtiss, A. S. Khojin, Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid, Science, 353 (2016) 467-470. https://doi.org/10.1126/science.aaf4767
  39. D. Faggion, W. D. G. Goncalves, J. Dupont, CO2 electroreduction in ionic liquids, Front. Chem., 7 (2019) 1-8. https://doi.org/10.3389/fchem.2019.00001
  40. H. Hashiba, L. C. Weng, Y. Chen, H. K. Sato, S. Yotsuhashi, C. Xiang, A. Z. Weber, Effects of electrolyte buffer capacity on surface reactant species and the reaction rate of CO2 in electrochemical CO2 reduction, J. Phys. Chem. C, 122 (2018) 3719-3726. https://doi.org/10.1021/acs.jpcc.7b11316
  41. M. Liu, Y. Pang, B. Zhang, P. De Luna, O. Voznyy, J. Xu, X. Zheng, C. T. Dinh, F. Fan, C. Cao, F. P. G. de Arquer, T. S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Filleter, D. Sinton, S. O. Kelley, E. H. Sargent, Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration, Nature., 537 (2016) 382-386. https://doi.org/10.1038/nature19060
  42. J. Resasco, L. D. Chen, E. Clark, C. Tsai, C. Hahn, T. F. Jaramillo, K. Chan, A. T. Bell, Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide, J. Am. Chem. Soc., 139 (2017) 11277-11287. https://doi.org/10.1021/jacs.7b06765
  43. D. Gao, F. Scholten, B. Roldan Cuenya, Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: halide effect, ACS Catal., 7 (2017) 5112-5120. https://doi.org/10.1021/acscatal.7b01416
  44. D. Gao, I. T. McCrum, S. Deo, Y. W. Choi, F. Scholten, W. Wan, J.G. Chen, M. J. Janik, B. Roldan Cuenya, Activity and selectivity control in CO2 electroreduction to multicarbon products over CuOx catalysts via electrolyte design, ACS Catal., 8 (2018) 10012-10020. https://doi.org/10.1021/acscatal.8b02587
  45. W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang, X. Xue, R. Chen, S. Yang, Z. Jin, Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals, Adv. Sci., 5 (2018) 1700275. https://doi.org/10.1002/advs.201700275
  46. K. J. P. Schouten, F. C. Vallejo, M. T. M. Koper, A step closer to the electrochemical production of liquid fuels, Angew. Chemie Int. Ed., 53 (2014) 10858-10860. https://doi.org/10.1002/anie.201406174
  47. M.G. Kibria, J.P. Edwards, C. M. Gabardo, C. Dinh, A. Seifitokaldani, D. Sinton, E. H. Sargent, Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design, Adv. Mater., 31 (2019) 1807166. https://doi.org/10.1002/adma.201807166
  48. B. Khezri, A. C. Fisher, M. Pumera, CO2 reduction: the quest for electrocatalytic materials, J. Mater. Chem. A, 5 (2017) 8230-8246. https://doi.org/10.1039/C6TA09875D
  49. S. Verma, B. Kim, H. R. M. Jhong, S. Ma, P. J. A. Kenis, A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2, ChemSusChem., 9 (2016) 1972-1979. https://doi.org/10.1002/cssc.201600394
  50. F. Y. Gao, R. C. Bao, M. R. Gao, S. H. Yu, Electrochemical CO2-to-CO conversion: electrocatalysts, electrolytes, and electrolyzers, J. Mater. Chem. A, 8 (2020) 15458-15478. https://doi.org/10.1039/D0TA03525D
  51. S. Liu, C. Sun, J. Xiao, J. L. Luo, Unraveling structure sensitivity in CO2 electroreduction to near-unity CO on silver nanocubes, ACS Catal., 10 (2020) 3158-3163. https://doi.org/10.1021/acscatal.9b03883
  52. W. H. Lee, Y. J. Ko, Y. Choi, S. Y. Lee, C. H. Choi, Y. J. Hwang, B. K. Min, P. Strasser, H. S. Oh, Highly selective and scalable CO2 to CO - Electrolysis using coralnanostructured Ag catalysts in zero-gap configuration, Nano Energy., 76 (2020) 105030. https://doi.org/10.1016/j.nanoen.2020.105030
  53. H. C. Mi, C. Yi, M. R. Gao, M. Yu, S. Liu, J. L. Luo, Theory-guided modulation of optimal silver nanoclusters toward efficient CO2 electroreduction, ACS Appl. Mater. Interfaces., 14 (2022) 43257-43264. https://doi.org/10.1021/acsami.2c10930
  54. S. Li, W. Chen, X. Dong, C. Zhu, A. Chen, Y. Song, G. Li, W. Wei, Y. Sun, Hierarchical micro/nanostructured silver hollow fiber boosts electroreduction of carbon dioxide, Nat. Commun., 13 (2022) 3080. https://doi.org/10.1038/s41467-022-30733-6
  55. M. Ma, K. Liu, J. Shen, R. Kas, W.A. Smith, In situ fabrication and reactivation of highly selective and stable Ag catalysts for electrochemical CO2 conversion, ACS Energy Lett., 3 (2018) 1301-1306. https://doi.org/10.1021/acsenergylett.8b00472
  56. H. Mistry, Y. W. Choi, A. Bagger, F. Scholten, C. S. Bonifacio, I. Sinev, N. J. Divins, I. Zegkinoglou, H. S. Jeon, K. Kisslinger, E. A. Stach, J. C. Yang, J. Rossmeisl, B. Roldan Cuenya, Enhanced carbon dioxide electroreduction to carbon monoxide over defect-rich plasma-activated silver catalysts, Angew. Chemie Int. Ed., 56 (2017) 11394-11398. https://doi.org/10.1002/anie.201704613
  57. Y. W. Choi, F. Scholten, I. Sinev, B. Roldan Cuenya, Enhanced stability and CO/Formate selectivity of plasma-treated SnOx/AgOx catalysts during CO2 electroreduction, J. Am. Chem. Soc., 141 (2019) 5261-5266. https://doi.org/10.1021/jacs.8b12766