DOI QR코드

DOI QR Code

Microstructural Analysis on Oxide Film of Al6061 Exposed to Atmospheric Conditions

대기 노출된 Al6061 알루미늄 합금 산화막에 대한 미세조직 분석

  • Jo, Junyeong (School of Mechanical Engineering, Pusan National University) ;
  • Kwon, Daeyeop (School of Mechanical Engineering, Pusan National University) ;
  • Choi, Wonjun (School of Mechanical Engineering, Pusan National University) ;
  • Bahn, Chi Bum (School of Mechanical Engineering, Pusan National University)
  • Received : 2022.01.03
  • Accepted : 2022.09.25
  • Published : 2022.10.31

Abstract

Al6061 aluminum alloy specimens were exposed to atmospheric conditions for maximum 24 months. 24-month exposure specimen showed some more frequent and larger size of corrosion products and pitting on the surface compared with the 12-month exposure specimens. The XRD examination revealed the dominant surface oxide phases of Al2O3 and Al(OH)3. The oxide thickness at uniform oxidation (or non-pitting) region was not much changed over exposure time. The 1.2 ㎛ deep oxygen penetration area was found in the 12-months exposed specimen near the thin uniform aluminum oxide film. The line-EDS was conducted through the penetration regions and non-penetrated grain boundary. There were signs of O and Si concentration through the penetration region, whereas non-penetration region showed no concentration of O or Si. It was confirmed that pitting is a more severe degradation mode in Al6061 (max. >4 ㎛ deep) compared with the uniform oxidation (max. ~200 nm deep) up to 24-months exposure.

Keywords

Acknowledgement

이 논문은 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. Pollard, F. Stephen, Boatbuilding with aluminum: A complete guide for the amateur and small shop, McGraw-Hill Professional (2006).
  2. W. Choi, D. Lee, C. B. Bahn, Quantitative analysis methods of chloride deposition on silver for atmospheric corrosion monitoring in south korea, Corrosion 77(1) (2021) 53-61. https://doi.org/10.5006/3622
  3. D. A. Jones, Principles and prevention of corrosion, Prentice Hall (1996).
  4. J. Lee, Effects of Na2S, CuCl2 and NaCl on the corrosion of aluminum, Diss. Graduate School of Chosun University (2020).
  5. S. W. Dean, W. H. Anthony, Atmospheric corrosion of wrought aluminum alloys during a ten-year period, Degradation of Metals in the Atmosphere, ASTM International (1987).
  6. S. Knight, M. Salagaras, A. Trueman, The study of intergranular corrosion in aircraft aluminium alloys using X-ray tomography, Corros. Sci., 53(2) (2011) 727-734. https://doi.org/10.1016/j.corsci.2010.11.005
  7. Y. Oya, Y. Kojima, N. Hara, Influence of silicon on intergranular corrosion for aluminum alloys, Mater. Trans.,54(7) (2013) 1200-1208. https://doi.org/10.2320/matertrans.M2013048
  8. W. Binger, E. Hollingsworth, D. Sprawls, In aluminium Vol. I, ed, Van Horn, ASM (1967) 209.
  9. M. Kaifu, Influence of Mn contents and heat treatments on intergranular corrosion of Al-Mn alloys, J. Japan Inst. Met., 32(1982).
  10. M. Zamin, The role of Mn in the corrosion behavior of Al-Mn alloys, Corrosion 37(11) (1981) 627-632. https://doi.org/10.5006/1.3577549
  11. A. Bhattamishra, K. Lal, Microstructural studies on the effect of Si and Cr on the intergranular corrosion in Al-Mg-Si alloys, Mater. Des., 18(1) (1997) 25-28. https://doi.org/10.1016/S0261-3069(97)00027-7
  12. Y. Zheng, B. Luo, Z. Bai, J. Wang, Y. Yin, Study of the precipitation hardening behaviour and intergranular corrosion of Al-Mg-Si alloys with differing Si contents, Metals 7(10) (2017) 387. https://doi.org/10.3390/met7100387
  13. J. Galvele, S. de De Micheli, Mechanism of intergranular corrosion of Al-Cu alloys, Corros. Sci., 10(11) (1970) 795-807. https://doi.org/10.1016/S0010-938X(70)80003-8
  14. Y. Zou, Q. Liu, Z. Jia, Y. Xing, L. Ding, X. Wang, The intergranular corrosion behavior of 6000-series alloys with different Mg/Si and Cu content, Appl. Surf. Sci.. 405 (2017) 489-496. https://doi.org/10.1016/j.apsusc.2017.02.045
  15. D. Zander, C. Schnatterer, C. Altenbach, V. Chaineux, Microstructural impact on intergranular corrosion and the mechanical properties of industrial drawn 6056 aluminum wires, Mater. Des., 83 (2015) 49-59. https://doi.org/10.1016/j.matdes.2015.05.079
  16. A. P. Sekhar, A. Samaddar, A. B. Mandal, D. Das, Influence of ageing on the intergranular corrosion of an Al-Mg-Si alloy, Met. Mater. Int., 27(12) (2021) 5059-5073. https://doi.org/10.1007/s12540-020-00843-1
  17. F. L. Zeng, Z. L. Wei, J. F. Li, C. X. Li, T. A. N. Xing, Z. Zhang, Z. Q. Zheng, Corrosion mechanism associated with Mg2Si and Si particles in Al-Mg-Si alloys, Trans. Nonferrous Met. Soc. China, 21(12) (2011) 2559-2567. https://doi.org/10.1016/S1003-6326(11)61092-3
  18. G.W. Walter, Laboratory simulation of atmospheric corrosion by SO2-I. Apparatus, electrochemical techniques, example results, Corros. Sci., 32(12) (1991) 1331-1352. https://doi.org/10.1016/0010-938X(91)90052-Q
  19. P.R. Vassie, Corrosion of structural steelwork in bridge enclosures, box sections, and anchorage chambers, Br. Corros. J., 22(1) (1987) 37-44. https://doi.org/10.1179/000705987798271866
  20. T. Otero, A. Porro, A. Elola, Prediction of pitting probability on 1050 aluminum in environmental conditions, Corrosion 48(9) (1992) 785-791. https://doi.org/10.5006/1.3316000
  21. S. Sun, Q. Zheng, D. Li, J. Wen, Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments, Corros. Sci., 51(4) (2009) 719-727. https://doi.org/10.1016/j.corsci.2009.01.016
  22. T. Zhang, Y. He, R. Cui, T. An, Long-term atmospheric corrosion of aluminum alloy 2024-T4 in a coastal environment, J. Mater. Eng. Perform., 24(7) (2015) 2764-2773. https://doi.org/10.1007/s11665-015-1541-y
  23. M. Liang, R. Melchers, I. Chaves, Corrosion and pitting of 6060 series aluminium after 2 years exposure in seawater splash, tidal and immersion zones, Corros. Sci., 140 (2018) 286-296. https://doi.org/10.1016/j.corsci.2018.05.036
  24. X. Yang, L. Zhang, S. Zhang, M. Liu, K. Zhou, X. Mu, Properties degradation and atmospheric corrosion mechanism of 6061 aluminum alloy in industrial and marine atmosphere environments, Corros. Mater., 68(5) (2017) 529-535. https://doi.org/10.1002/maco.201609201
  25. G. Wang, X. Tuo, L. Kou, W. Zhao, X. Zhu, Research on corrosion performance of 6061 aluminum alloy in salt spray environment, Materwiss. Werksttech., 51(12) (2020) 1686-1699. https://doi.org/10.1002/mawe.202000081
  26. M. Poltavtseva, A. Heyn, E. Boese, Long term corrosion behavior of clad aluminum materials under different atmospheric conditions, Corros. Mater., 64(8) (2013) 723-730. https://doi.org/10.1002/maco.201206962
  27. J. Ryl, J. Wysocka, M. Jarzynka, A. Zielinski, J. Orlikowski, K. Darowicki, Effect of native air-formed oxidation on the corrosion behavior of AA 7075 aluminum alloys, Corros. Sci., 87 (2014) 150-155. https://doi.org/10.1016/j.corsci.2014.06.022
  28. Y. Kim, H. Lim, J. Kim, W. Hwang, Y. Park, Corrosion cost and corrosion map of Korea-Based on the data from 2005 to 2010, Corros. Sci. Technol., 10(2) (2011) 52-59.
  29. S. Kim, C. Lee, C.B. Bahn, TEM characterization of oxide films formed on Al1050 and Al7075 alloys under atmospheric corrosion conditions, J. Surf. Sci. Eng. 50(6) (2017) 447-454.
  30. D. Kim, G. Kim, W. Choi, C.B. Bahn, TEM Analysis on oxide films of Al1050 and Al7075 exposed to 24-month atmospheric conditions, J. Surf. Sci. Eng. 52(2) (2019) 62-71.
  31. D. Kwon, W. Choi, C.B. Bahn, Microstructural analysis on oxide film of Al2024 exposed to atmospheric conditions, J. Surf. Sci. Eng. 54(2) (2021) 62-70.
  32. American Society for Testing and Materials (ASTM) International, ASTM G50-10 Standard Practice for Conducting Atmospheric Corrosion Tests on Metals (2010).
  33. S. Eric, H. Gerard, Corrosion minimization for research reactor fuel (2005).
  34. B. C. Bunker, G. C. Nelson, K. Zavadil, J. Barbour, F. Wall, J. Sullivan, C.F. Windisch, M. Engelhardt, D. R. Baer, Hydration of passive oxide films on aluminum, J. Phys. Chem., B 106(18) (2002) 4705-4713. https://doi.org/10.1021/jp013246e
  35. C. Vargel, Corrosion of Aluminium, The oxide film and passivity of aluminum, 2nd ed., Elsevier, (2020).
  36. International atomic energy agency, Corrosion of research reactor aluminium clad spent fuel in water, IAEA-TECDOC-1637, IAEA, Vienna, (2010).
  37. K. Farrell, Performance of aluminum in research reactors, Comp. Nucl. Mater., 5 (2012) 143-175. https://doi.org/10.1016/B978-0-08-056033-5.00113-0
  38. P.R. Roberge, Handbook of corrosion engineering, McGraw-Hill Education, (2019) 65.
  39. T. E. Graedel, Corrosion mechanisms for aluminum exposed to the atmosphere, J. Electrochem. Soc., 136(4), (1989), 204C. https://doi.org/10.1149/1.2096869
  40. C. Leygraf, T. E. Graedel, J. Tidblad, Wallinder I. O., Atmospheric corrosion (Vol. 40). New York: Wiley-interscience, (2000).
  41. A. M. Clark, M. H. Hey, Hey'smineral index: mineral species, varieties and synonyms (Vol. 848). London: Chapman & Hall, (1993).