DOI QR코드

DOI QR Code

A new reconfigurable liquid-metal-antenna-based sensor

  • Zhou, Xiaoping (School of Civil Engineering, Chongqing University) ;
  • Fu, Yihui (School of Civil Engineering, Chongqing University) ;
  • Zhu, Hantao (School of Civil Engineering, Chongqing University) ;
  • Yu, Zihao (School of Civil Engineering, Chongqing University) ;
  • Wang, Shanyong (Priority Research Centre for Geotechnical Science and Engineering, School of Engineering, The University of Newcastle)
  • Received : 2022.01.20
  • Accepted : 2022.07.06
  • Published : 2022.10.25

Abstract

In this paper, a new sensor chip with frequency reconstruction range of 2.252 GHz ~ 2.450 GHz is designed and fabricated. On this basis, a self-designed "T-shaped" shell is added to overcome the disadvantage of uneven deformation of the traditional steel shell, and the range of the sensor chip is expanded to 0 kN ~ 96 kN. The liquid metal antenna is used to carry out a step-by-step loading test, and the relationship between the antenna resonance frequency and the pressure load is analyzed. The results show that there is a good linear relationship between the pressure load and the resonant frequency. Therefore, the liquid metal antenna can be regarded as a pressure sensor. The cyclic loading and unloading experiments of the sensor are carried out, and different loading rates are used to explore the influence on the performance of the sensor. The loading and unloading characteristic curves and the influence characteristic curves of loading rate are plotted. The experimental results show that the sensor has no residual deformation during the cycle of loading and unloading. Moreover, the influence of temperature on the performance of the sensor is studied, and the temperature correction formula is derived.

Keywords

Acknowledgement

The work is supported by the National Natural Science Foundation of China (Nos. 52027814, 51839009).

References

  1. Ali, M.M., Narakathu, B.B., Emamian, S., Chlaihawi, A.A., Aljanabi, F., Maddipatla, D., Bazuin, B.J. and Atashbar, M.Z. (2016), "Eutectic Ga-In liquid metal based flexible capacitive pressure sensor", Proceedings of IEEE Sensors Conference, Orlando, FL, USA, October-November. https://doi.org/10.1109/ICSENS.2016.7808515
  2. Ali, S., Maddipatla, D., Narakathu, B.B., Chlaihawi, A.A., Emamian, S., Janabi, F., Bazuin, B.J. and Atashbar, M.Z. (2019), "Flexible capacitive pressure sensor based on PDMS substrate and Ga-In liquid metal", IEEE Sens. J., 19(1), 97-104. https://doi.org/10.1109/JSEN.2018.2877929
  3. Castorina, G., Donato, L.D., Morabito, A.F., Isernia, T. and Sorbello, G. (2016), "Analysis and design of a concrete embedded antenna for wireless monitoring applications [antenna applications corner]", IEEE Antennas Propag. Mag., 58(6), 76-93. https://doi.org/10.1109/MAP.2016.2609818
  4. Choi, M., Wi, B., Mun, B., Yoon, Y., Lee, H. and Lee, B. (2015), "A compact frequency reconfigurable antenna for LTE mobile handset applications", Int. J. Antennas Propag., 2015, 764949. http://dx.doi.org/10.1155/2015/764949
  5. Chossaty, J.B., Tao, Y., Duchaine, V. and Park, Y.L. (2015), "Wearable soft artificial skin for hand motion detection with embedded microfluidic strain sensing", Proceedings of IEEE International Conference, Seattle, WA, USA, July. https://doi.org/10.1109/ICRA.2015.7139544
  6. Chuang, C.H., Liou, Y.R. and Shieh, M.Y. (2012), "Flexible tactile sensor array for foot pressure mapping system in a biped robot", Smart Struct. Syst., Int. J., 9(6), 535-547. https://doi.org/10.12989/sss.2012.9.6.535
  7. Cohen, D.J., Mitra, D., Peterson, K. and Maharbiz, M.M. (2012), "A highly elastic, capacitive strain gauge based on percolating nanotube networks", Nano Lett., 12(4), 1821-1825. https://doi.org/10.1021/nl204052z
  8. Deshmukh, S., Xu, X., Mohammad, I. and Huang, H.Y. (2011), "Antenna sensor skin for fatigue crack detection and monitoring", Smart Struct. Syst., Int. J., 8(1), 93-105. https://doi.org/10.12989/sss.2011.8.1.093
  9. Dey, A., Guldiken, R. and Mumcu, G. (2013), "Wideband frequency tunable liquid metal monopole antenna", Proceedings of IEEE Antennas and Propagation Society International Symposium (APSURSI), Orlando, FL, USA, July. https://doi.org/10.1109/APS.2013.6710857
  10. Dey, A., Kiourti, A., Mumcu, G. and Volakis, J.L. (2015), "Microfluidically reconFigured frequency tunable dipole antenna", Proceedings of 9th European Conference, Lisbon, Portugal, April.
  11. Dildar, H., Althobiani, F., Ahmad, I., Khan, W.U.R., Ullah, S., Mufti, N., Ullah, S., Muhammad, F., Irfan, M. and Glowacz, A. (2020), "Design and experimental analysis of multiband frequency reconfigurable antenna for 5G and sub-6 GHz wireless communication", Micromachines, 12(1), 32. https://doi.org/10.3390/mi12010032
  12. Georgopoulou, A., Michel, S., Vanderborght, B. and Clemens, F. (2021), "Piezoresistive sensor fiber composites based on silicone elastomers for the monitoring of the position of a robot arm", Sens. Actuator A-Phys., 318, 112433. https://doi.org/10.1016/j.sna.2020.112433
  13. Guo, D.J., Pan, X.D. and He, H. (2020), "Effects of temperature on MWCNTs/PDMS composites based flexible strain sensors", J. Cent. South Univ., 27(11), 3202-3212. https://doi.org/10.1007/s11771-020-4540-6
  14. Hu, W., Niu, X., Zhao, R. and Pei, Q. (2013), "Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane", Appl. Phys. Lett., 102(8), 083303. https://doi.org/10.1063/1.4794143
  15. Jiao, Y., Young, C.W., Yang, S., Oren, S., Ceylan, H., Kim, S., Gopalakrishnan, K., Taylor, P.C. and Liang, D. (2016), "Wearable graphene sensors with microfluidic liquid metal wiring for structural health monitoring and human body motion sensing", IEEE Sens. J., 16(22), 7870-7875. https://doi.org/10.1109/JSEN.2016.2608330
  16. Jung, T. and Yang, S. (2015), "Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel", Sensors, 15(5), 11823-11835. https://doi.org/10.3390/s150511823
  17. Karthikeyan, M., Park, J. and Lee, D.W. (2019), "Liquid metal based flexible microfluidic device for wireless sensor applications", Proceedings of 2019 International Conference, Daejeon, Korea, July. https://doi.org/10.1109/OMN.2019.8925030
  18. Khan, M.R., Hayes, G.J., So, J.H., Lazzi, G. and Dickey, M.D. (2011), "A frequency shifting liquid metal antenna with pressure responsiveness", Appl. Phys. Lett., 99(1), 013501. https://doi.org/10.1063/1.3603961
  19. Kim, D., Pierce, R.G., Henderson, R., Doo, S.J., Yoo, K. and Lee, J.B. (2014), "Liquid metal actuation-based reversible frequency tunable monopole antenna", Appl. Phys. Lett., 105(23), 234104. https://doi.org/10.1063/1.4903882
  20. Kim, K., Choi, J., Jeong, Y., Kim, M. Cho, I, Kim, S., Oh, Y. and Park, I. (2019), "Strain-insensitive soft pressure sensor for health monitoring application using 3D-printed microcgannel mold and liquid metal", Proceedings of 20th International Conference, Berlin, Germany, June. https://doi.org/10.1109/TRANSDUCERS.2019.8808472
  21. Kim, N., Chang, Y.L., Chen, J., Barbee, T., Wang, W., Kim, J.Y., Kwon, M.K., Shervin, S., Moradnia, M., Pouladi, S., Khatiwada, D., Selvamanickam, V. and Ryou, J.H. (2020), "Piezoelectric pressure sensor based on flexible gallium nitride thin film for harsh-environment and high-temperature applications", Sens. Actuator A-Phys., 305, 111940. https://doi.org/10.1016/j.sna.2020.111940
  22. Ko, W.H. (1986), "Solid-state capacitive pressure transducers", Sens. Actuator, 10(3-4), 303-320. https://doi.org/10.1016/0250-6874(86)80052-X
  23. Ko, W.H., Shao, B.X., Fung, C.D., Shen, W.J. and Yeh, G.J. (1983), "Capacitive pressure transducers with integrated circuits", Sens. Actuator, 4, 403-411. https://doi.org/10.1016/0250-6874(83)85051-3
  24. Lebedev, V., Laukhina, E., Laukhin, V., Rovira, C. and Veciana, J. (2012), "Towards Flexible Lightweight Strain Sensors with Low Temperature Coefficient of Resistance", Procedia Eng., 47, 857-860. https://doi.org/10.1016/j.proeng.2012.09.282
  25. Lee, S., Lee, M. and Lim, S. (2020), "Frequency reconfigurable antenna actuated by three-storey tower kirigami", Extreme Mech. Lett., 39, 100833. https://doi.org/doi:10.1016/j.eml.2020.100833
  26. Li, X. and Zhang, Y.F. (2008), "Feasibility study of wide-band low-profile ultrasonic sensor with flexible piezoelectric paint", Smart Struct. Syst., Int. J., 4(5), 565-582. https://doi.org/10.12989/sss.2008.4.5.565
  27. Li, K., Turcotte, K. and Veres, T. (2019), "Stretchable Strain Sensors based on Thermoplastic Elastomer Microfluidics Embedded with Liquid Metal", Proceedings of IEEE Sensors Conference, Montreal, Canada, July. https://doi.org/10.1109/SENSORS43011.2019.8956780
  28. Li, R., Zhou, Q., Bi, Y., Cao, S., Xia, X., Yang, A., Li, S. and Xiao, X. (2021), "Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches", Sens. Actuator A-Phys., 321, 112425. https://doi.org/10.1016/j.sna.2020.112425
  29. Liu, G.J., Cao, L.P., Wang, L., Liu, X.N., Du, F.J., Li, Y.Y., Liu, Y.L. and Sun, X.B. (2020), "Design of Frequency Reconfigurable Antenna for WLAN/Bluetooth/WiMAX", J. Phys.: Conf. Ser., 1684(1), 012157. https://doi.org/10.1088/1742-6596/1684/1/012157
  30. Mathur, P., Madanan, G. and Raman, S. (2020), "Mechanically frequency reconfigurable antenna for WSN, WLAN, and LTE 2500 based internet of things applications", Int. J. RF Microw. Comput-Aid. Eng., 31(2). https://doi.org/10.1002/mmce.22318
  31. Min, S., Asrulnizam, A., Atsunori, M. and Mariatti, M. (2019), "Properties of stretchable and flexible strain sensor based on silver/PDMS nanocomposites", Mater. Today: Proceedings, 17(3), 616-622. https://doi.org/10.1016/j.matpr.2019.06.342
  32. Otake, S. and Konishi, S. (2018), "Integration of flexible strain sensor using liquid metal into soft micro-actuator", Proceedings of IEEE Micro Electro Mechanical Systems (MEMS), Belfast, UK, April. https://doi.org/10.1109/MEMSYS.2018.8346617
  33. Park, Y.L., Majidi, C., Kramer, R., Berard, P. and Wood, R. (2010), "Hyperelastic pressure sensing with a liquid-embedded elastomer", J. Micromech. Microeng., 20(12), 125029. https://doi.org/10.1088/0960-1317/20/12/125029
  34. Park, Y.L., Chen, B.R. and Wood, R.J. (2012a), "Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors", IEEE Sens. J., 12(8), 2711-2718. https://doi.org/10.1109/JSEN.2012.2200790
  35. Park, Y.L., Tepayotl-Ramirez, D., Wood, R.J. and Majidi, C. (2012b), "Influence of cross-sectional geometry on the sensitivity and hysteresis of liquid-phase electronic pressure sensors", Appl. Phys. Lett., 101(19), 191904. https://doi.org/10.1063/1.4767217
  36. Pignanelli, J., Schlingman, K., Carmichael, T.B., Rondeau-Gagne, S. and Ahamed, M.J. (2019), "A comparative analysis of capacitive-based flexible PDMS pressure sensors", Sens. Actuator A-Phys., 285, 427-436. https://doi.org/10.1016/j.sna.2018.11.014
  37. Ren, G.J., Cai, C.L. and Wang, D.H. (2016), "Pressure sensor displacement analysis and fatigue lifetime prediction", Environ. Technol., 34(3), 33-36.
  38. Saha, P.B., Ghoshal, D. and Dash, R.K. (2020), "A miniaturized frequency reconfigurable antenna with half-mode CRLHembedded metamaterial arm", J. Electromagn. Waves Appl., 35(3), 277-290. https://doi.org/10.1080/09205071.2020.1832587
  39. Saptarshi, G. and Sungjoon, L. (2018), "A multifunctional reconfigurable frequency-selective surface using liquid-metal alloy", IEEE Trans. Antennas Propag., 66(9), 4953-4957. https://doi.org/10.1109/TAP.2018.2851455
  40. Shi, X. and Cheng, C.H. (2013), "Artificial hair cell sensors using liquid metal alloy as piezoresistors", Proceedings of the 8th Annual IEEE International Conference, Suzhou, China, July. https://doi.org/10.1109/NEMS.2013.6559886
  41. Shou, Y.D.; Zhou, X.P.; Chang, Q.P. and Liu, C. (2021), "An innovative liquid metal-based pressure sensor with its application in geotechnical engineering", Smart Struct. Syst., Int. J., 27(1), 89-99. https://doi.org/10.12989/sss.2021.27.1.089
  42. Stefan, S., Wedler, J., Rhein, S., Schmidt, M., Korner, C., Michaelis A. and Gebhardt S. (2017), "A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures", Results Phys., 7, 2534-2539. https://doi.org/10.1016/j.rinp.2017.07.034
  43. Su, W., Nauroze, S.A., Ryan, B. and Tentzeris, M.M. (2017), "Novel 3D printed liquid-metal-alloy microfluidics-based zigzag and helical antennas for origami reconfigurable antenna "trees"", Proceedings of IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, June. https://doi.org/10.1109/MWSYM.2017.8058933
  44. Traille, A., Yang, L., Rida, A. and Tentzeris, M.M. (2008), "A novel liquid antenna for wearable bio-monitoring applications", Proceedings of IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA, USA, June. https://doi.org/10.1109/MWSYM.2008.4632984
  45. Ventrelli, L., Beccai, L., Mattoli, V., Menciassi, A. and Dario, P. (2009), "Development of a stretchable skin-like tactile sensor based on polymeric composites", Proceedings of IEEE International Conference, Guilin, China, February. https://doi.org/10.1109/ROBIO.2009.5420644
  46. Wang, B. (2010), "The United States has developed a self-healing liquid metal antenna", Funct. Mater. Inf., 7(1), 55-56.
  47. Wang, P.S., Liu, Q., Li, X., Zhang, Z.G. and Zheng, D.M. (2020), "Single crystal silicon high temperature piezoresistive pressure sensor", Inst. Tech. Sens., 2, 1-3.
  48. Won, D.J., Baek, S., Huh, M., Kim, H., Lee, S. and Kim, J. (2017), "Robust capacitive touch sensor using liquid metal droplets with large dynamic range", Sens. Actuator A-Phys., 259, 105-111. https://doi.org/10.1016/j.sna.2017.03.032
  49. Xu, D.C., Guo, X.H., Tian, X.J., Liu, W. and Guo, Y.H. (2016), "Design of Dual-Band Flexible Antenna for 2.45 GHz and 5.8 GHz", J. Jilin Univ. (Science Edition), 54(6), 1413-1417.
  50. Yu, L.B., Zhao, Z., Fang, Z., Du, L.D. and Ding, G.J. (2010), "Optimization Design of Mental Strain Pressure Sensor Based on MEMS Technology", Inst. Tech. Sens., 10, 1-3, 7.
  51. Zhang, T. (2019), "Flexible sensor with new materials to achieve high sensitivity and large strain response", Sens. World, 25(03), 40-41.
  52. Zhang, B., Zhang, L., Deng, W., Jin, L., Chun, F., Pan, H., Gu, B., Zhang, H., Lv, Z., Yang, W. and Wang, Z.L. (2017), "Selfpowered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring", ACS Nano, 11(7), 7440-7446. https://doi.org/10.1021/acsnano.7b03818
  53. Zheng, L.X., Li, Z.Q., Song, X.H. and Zhang, X.Y. (2013), "Research on strain resistance effect of smart concrete under triaxial compression", J. Sichuan Univ. (Engineering Science Edition), 45(2), 33-37.
  54. Zhou, X.P. and Yu, Z.H. (2021), "Flexible multimode pressure sensor based on liquid metal", Smart Struct. Syst., Int. J., 28(6), 839-853. https://doi.org/10.12989/sss.2021.28.6.839
  55. Zhou, X.P., Deng R.S. and Zhu, J.Y. (2018), "Three-layer-stacked pressure sensor with a liquid metal-embedded elastomer", J. Micromech. Microeng., 28(8), 085020. https://doi.org/10.1088/1361-6439/aac13c
  56. Zhou, X.P., He, Y. and Zeng, J. (2019), "Liquid metal antennabased pressure sensor", Smart Mater. Struct., 28(2), 25019. https://doi.org/10.1088/1361-665X/aaf842