Acknowledgement
The work is supported by the National Natural Science Foundation of China (Nos. 52027814, 51839009).
References
- Ali, M.M., Narakathu, B.B., Emamian, S., Chlaihawi, A.A., Aljanabi, F., Maddipatla, D., Bazuin, B.J. and Atashbar, M.Z. (2016), "Eutectic Ga-In liquid metal based flexible capacitive pressure sensor", Proceedings of IEEE Sensors Conference, Orlando, FL, USA, October-November. https://doi.org/10.1109/ICSENS.2016.7808515
- Ali, S., Maddipatla, D., Narakathu, B.B., Chlaihawi, A.A., Emamian, S., Janabi, F., Bazuin, B.J. and Atashbar, M.Z. (2019), "Flexible capacitive pressure sensor based on PDMS substrate and Ga-In liquid metal", IEEE Sens. J., 19(1), 97-104. https://doi.org/10.1109/JSEN.2018.2877929
- Castorina, G., Donato, L.D., Morabito, A.F., Isernia, T. and Sorbello, G. (2016), "Analysis and design of a concrete embedded antenna for wireless monitoring applications [antenna applications corner]", IEEE Antennas Propag. Mag., 58(6), 76-93. https://doi.org/10.1109/MAP.2016.2609818
- Choi, M., Wi, B., Mun, B., Yoon, Y., Lee, H. and Lee, B. (2015), "A compact frequency reconfigurable antenna for LTE mobile handset applications", Int. J. Antennas Propag., 2015, 764949. http://dx.doi.org/10.1155/2015/764949
- Chossaty, J.B., Tao, Y., Duchaine, V. and Park, Y.L. (2015), "Wearable soft artificial skin for hand motion detection with embedded microfluidic strain sensing", Proceedings of IEEE International Conference, Seattle, WA, USA, July. https://doi.org/10.1109/ICRA.2015.7139544
- Chuang, C.H., Liou, Y.R. and Shieh, M.Y. (2012), "Flexible tactile sensor array for foot pressure mapping system in a biped robot", Smart Struct. Syst., Int. J., 9(6), 535-547. https://doi.org/10.12989/sss.2012.9.6.535
- Cohen, D.J., Mitra, D., Peterson, K. and Maharbiz, M.M. (2012), "A highly elastic, capacitive strain gauge based on percolating nanotube networks", Nano Lett., 12(4), 1821-1825. https://doi.org/10.1021/nl204052z
- Deshmukh, S., Xu, X., Mohammad, I. and Huang, H.Y. (2011), "Antenna sensor skin for fatigue crack detection and monitoring", Smart Struct. Syst., Int. J., 8(1), 93-105. https://doi.org/10.12989/sss.2011.8.1.093
- Dey, A., Guldiken, R. and Mumcu, G. (2013), "Wideband frequency tunable liquid metal monopole antenna", Proceedings of IEEE Antennas and Propagation Society International Symposium (APSURSI), Orlando, FL, USA, July. https://doi.org/10.1109/APS.2013.6710857
- Dey, A., Kiourti, A., Mumcu, G. and Volakis, J.L. (2015), "Microfluidically reconFigured frequency tunable dipole antenna", Proceedings of 9th European Conference, Lisbon, Portugal, April.
- Dildar, H., Althobiani, F., Ahmad, I., Khan, W.U.R., Ullah, S., Mufti, N., Ullah, S., Muhammad, F., Irfan, M. and Glowacz, A. (2020), "Design and experimental analysis of multiband frequency reconfigurable antenna for 5G and sub-6 GHz wireless communication", Micromachines, 12(1), 32. https://doi.org/10.3390/mi12010032
- Georgopoulou, A., Michel, S., Vanderborght, B. and Clemens, F. (2021), "Piezoresistive sensor fiber composites based on silicone elastomers for the monitoring of the position of a robot arm", Sens. Actuator A-Phys., 318, 112433. https://doi.org/10.1016/j.sna.2020.112433
- Guo, D.J., Pan, X.D. and He, H. (2020), "Effects of temperature on MWCNTs/PDMS composites based flexible strain sensors", J. Cent. South Univ., 27(11), 3202-3212. https://doi.org/10.1007/s11771-020-4540-6
- Hu, W., Niu, X., Zhao, R. and Pei, Q. (2013), "Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane", Appl. Phys. Lett., 102(8), 083303. https://doi.org/10.1063/1.4794143
- Jiao, Y., Young, C.W., Yang, S., Oren, S., Ceylan, H., Kim, S., Gopalakrishnan, K., Taylor, P.C. and Liang, D. (2016), "Wearable graphene sensors with microfluidic liquid metal wiring for structural health monitoring and human body motion sensing", IEEE Sens. J., 16(22), 7870-7875. https://doi.org/10.1109/JSEN.2016.2608330
- Jung, T. and Yang, S. (2015), "Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel", Sensors, 15(5), 11823-11835. https://doi.org/10.3390/s150511823
- Karthikeyan, M., Park, J. and Lee, D.W. (2019), "Liquid metal based flexible microfluidic device for wireless sensor applications", Proceedings of 2019 International Conference, Daejeon, Korea, July. https://doi.org/10.1109/OMN.2019.8925030
- Khan, M.R., Hayes, G.J., So, J.H., Lazzi, G. and Dickey, M.D. (2011), "A frequency shifting liquid metal antenna with pressure responsiveness", Appl. Phys. Lett., 99(1), 013501. https://doi.org/10.1063/1.3603961
- Kim, D., Pierce, R.G., Henderson, R., Doo, S.J., Yoo, K. and Lee, J.B. (2014), "Liquid metal actuation-based reversible frequency tunable monopole antenna", Appl. Phys. Lett., 105(23), 234104. https://doi.org/10.1063/1.4903882
- Kim, K., Choi, J., Jeong, Y., Kim, M. Cho, I, Kim, S., Oh, Y. and Park, I. (2019), "Strain-insensitive soft pressure sensor for health monitoring application using 3D-printed microcgannel mold and liquid metal", Proceedings of 20th International Conference, Berlin, Germany, June. https://doi.org/10.1109/TRANSDUCERS.2019.8808472
- Kim, N., Chang, Y.L., Chen, J., Barbee, T., Wang, W., Kim, J.Y., Kwon, M.K., Shervin, S., Moradnia, M., Pouladi, S., Khatiwada, D., Selvamanickam, V. and Ryou, J.H. (2020), "Piezoelectric pressure sensor based on flexible gallium nitride thin film for harsh-environment and high-temperature applications", Sens. Actuator A-Phys., 305, 111940. https://doi.org/10.1016/j.sna.2020.111940
- Ko, W.H. (1986), "Solid-state capacitive pressure transducers", Sens. Actuator, 10(3-4), 303-320. https://doi.org/10.1016/0250-6874(86)80052-X
- Ko, W.H., Shao, B.X., Fung, C.D., Shen, W.J. and Yeh, G.J. (1983), "Capacitive pressure transducers with integrated circuits", Sens. Actuator, 4, 403-411. https://doi.org/10.1016/0250-6874(83)85051-3
- Lebedev, V., Laukhina, E., Laukhin, V., Rovira, C. and Veciana, J. (2012), "Towards Flexible Lightweight Strain Sensors with Low Temperature Coefficient of Resistance", Procedia Eng., 47, 857-860. https://doi.org/10.1016/j.proeng.2012.09.282
- Lee, S., Lee, M. and Lim, S. (2020), "Frequency reconfigurable antenna actuated by three-storey tower kirigami", Extreme Mech. Lett., 39, 100833. https://doi.org/doi:10.1016/j.eml.2020.100833
- Li, X. and Zhang, Y.F. (2008), "Feasibility study of wide-band low-profile ultrasonic sensor with flexible piezoelectric paint", Smart Struct. Syst., Int. J., 4(5), 565-582. https://doi.org/10.12989/sss.2008.4.5.565
- Li, K., Turcotte, K. and Veres, T. (2019), "Stretchable Strain Sensors based on Thermoplastic Elastomer Microfluidics Embedded with Liquid Metal", Proceedings of IEEE Sensors Conference, Montreal, Canada, July. https://doi.org/10.1109/SENSORS43011.2019.8956780
- Li, R., Zhou, Q., Bi, Y., Cao, S., Xia, X., Yang, A., Li, S. and Xiao, X. (2021), "Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches", Sens. Actuator A-Phys., 321, 112425. https://doi.org/10.1016/j.sna.2020.112425
- Liu, G.J., Cao, L.P., Wang, L., Liu, X.N., Du, F.J., Li, Y.Y., Liu, Y.L. and Sun, X.B. (2020), "Design of Frequency Reconfigurable Antenna for WLAN/Bluetooth/WiMAX", J. Phys.: Conf. Ser., 1684(1), 012157. https://doi.org/10.1088/1742-6596/1684/1/012157
- Mathur, P., Madanan, G. and Raman, S. (2020), "Mechanically frequency reconfigurable antenna for WSN, WLAN, and LTE 2500 based internet of things applications", Int. J. RF Microw. Comput-Aid. Eng., 31(2). https://doi.org/10.1002/mmce.22318
- Min, S., Asrulnizam, A., Atsunori, M. and Mariatti, M. (2019), "Properties of stretchable and flexible strain sensor based on silver/PDMS nanocomposites", Mater. Today: Proceedings, 17(3), 616-622. https://doi.org/10.1016/j.matpr.2019.06.342
- Otake, S. and Konishi, S. (2018), "Integration of flexible strain sensor using liquid metal into soft micro-actuator", Proceedings of IEEE Micro Electro Mechanical Systems (MEMS), Belfast, UK, April. https://doi.org/10.1109/MEMSYS.2018.8346617
- Park, Y.L., Majidi, C., Kramer, R., Berard, P. and Wood, R. (2010), "Hyperelastic pressure sensing with a liquid-embedded elastomer", J. Micromech. Microeng., 20(12), 125029. https://doi.org/10.1088/0960-1317/20/12/125029
- Park, Y.L., Chen, B.R. and Wood, R.J. (2012a), "Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors", IEEE Sens. J., 12(8), 2711-2718. https://doi.org/10.1109/JSEN.2012.2200790
- Park, Y.L., Tepayotl-Ramirez, D., Wood, R.J. and Majidi, C. (2012b), "Influence of cross-sectional geometry on the sensitivity and hysteresis of liquid-phase electronic pressure sensors", Appl. Phys. Lett., 101(19), 191904. https://doi.org/10.1063/1.4767217
- Pignanelli, J., Schlingman, K., Carmichael, T.B., Rondeau-Gagne, S. and Ahamed, M.J. (2019), "A comparative analysis of capacitive-based flexible PDMS pressure sensors", Sens. Actuator A-Phys., 285, 427-436. https://doi.org/10.1016/j.sna.2018.11.014
- Ren, G.J., Cai, C.L. and Wang, D.H. (2016), "Pressure sensor displacement analysis and fatigue lifetime prediction", Environ. Technol., 34(3), 33-36.
- Saha, P.B., Ghoshal, D. and Dash, R.K. (2020), "A miniaturized frequency reconfigurable antenna with half-mode CRLHembedded metamaterial arm", J. Electromagn. Waves Appl., 35(3), 277-290. https://doi.org/10.1080/09205071.2020.1832587
- Saptarshi, G. and Sungjoon, L. (2018), "A multifunctional reconfigurable frequency-selective surface using liquid-metal alloy", IEEE Trans. Antennas Propag., 66(9), 4953-4957. https://doi.org/10.1109/TAP.2018.2851455
- Shi, X. and Cheng, C.H. (2013), "Artificial hair cell sensors using liquid metal alloy as piezoresistors", Proceedings of the 8th Annual IEEE International Conference, Suzhou, China, July. https://doi.org/10.1109/NEMS.2013.6559886
- Shou, Y.D.; Zhou, X.P.; Chang, Q.P. and Liu, C. (2021), "An innovative liquid metal-based pressure sensor with its application in geotechnical engineering", Smart Struct. Syst., Int. J., 27(1), 89-99. https://doi.org/10.12989/sss.2021.27.1.089
- Stefan, S., Wedler, J., Rhein, S., Schmidt, M., Korner, C., Michaelis A. and Gebhardt S. (2017), "A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures", Results Phys., 7, 2534-2539. https://doi.org/10.1016/j.rinp.2017.07.034
- Su, W., Nauroze, S.A., Ryan, B. and Tentzeris, M.M. (2017), "Novel 3D printed liquid-metal-alloy microfluidics-based zigzag and helical antennas for origami reconfigurable antenna "trees"", Proceedings of IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, June. https://doi.org/10.1109/MWSYM.2017.8058933
- Traille, A., Yang, L., Rida, A. and Tentzeris, M.M. (2008), "A novel liquid antenna for wearable bio-monitoring applications", Proceedings of IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA, USA, June. https://doi.org/10.1109/MWSYM.2008.4632984
- Ventrelli, L., Beccai, L., Mattoli, V., Menciassi, A. and Dario, P. (2009), "Development of a stretchable skin-like tactile sensor based on polymeric composites", Proceedings of IEEE International Conference, Guilin, China, February. https://doi.org/10.1109/ROBIO.2009.5420644
- Wang, B. (2010), "The United States has developed a self-healing liquid metal antenna", Funct. Mater. Inf., 7(1), 55-56.
- Wang, P.S., Liu, Q., Li, X., Zhang, Z.G. and Zheng, D.M. (2020), "Single crystal silicon high temperature piezoresistive pressure sensor", Inst. Tech. Sens., 2, 1-3.
- Won, D.J., Baek, S., Huh, M., Kim, H., Lee, S. and Kim, J. (2017), "Robust capacitive touch sensor using liquid metal droplets with large dynamic range", Sens. Actuator A-Phys., 259, 105-111. https://doi.org/10.1016/j.sna.2017.03.032
- Xu, D.C., Guo, X.H., Tian, X.J., Liu, W. and Guo, Y.H. (2016), "Design of Dual-Band Flexible Antenna for 2.45 GHz and 5.8 GHz", J. Jilin Univ. (Science Edition), 54(6), 1413-1417.
- Yu, L.B., Zhao, Z., Fang, Z., Du, L.D. and Ding, G.J. (2010), "Optimization Design of Mental Strain Pressure Sensor Based on MEMS Technology", Inst. Tech. Sens., 10, 1-3, 7.
- Zhang, T. (2019), "Flexible sensor with new materials to achieve high sensitivity and large strain response", Sens. World, 25(03), 40-41.
- Zhang, B., Zhang, L., Deng, W., Jin, L., Chun, F., Pan, H., Gu, B., Zhang, H., Lv, Z., Yang, W. and Wang, Z.L. (2017), "Selfpowered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring", ACS Nano, 11(7), 7440-7446. https://doi.org/10.1021/acsnano.7b03818
- Zheng, L.X., Li, Z.Q., Song, X.H. and Zhang, X.Y. (2013), "Research on strain resistance effect of smart concrete under triaxial compression", J. Sichuan Univ. (Engineering Science Edition), 45(2), 33-37.
- Zhou, X.P. and Yu, Z.H. (2021), "Flexible multimode pressure sensor based on liquid metal", Smart Struct. Syst., Int. J., 28(6), 839-853. https://doi.org/10.12989/sss.2021.28.6.839
- Zhou, X.P., Deng R.S. and Zhu, J.Y. (2018), "Three-layer-stacked pressure sensor with a liquid metal-embedded elastomer", J. Micromech. Microeng., 28(8), 085020. https://doi.org/10.1088/1361-6439/aac13c
- Zhou, X.P., He, Y. and Zeng, J. (2019), "Liquid metal antennabased pressure sensor", Smart Mater. Struct., 28(2), 25019. https://doi.org/10.1088/1361-665X/aaf842