DOI QR코드

DOI QR Code

Taxus chinensis로부터 파클리탁셀 정제를 위한 음압 캐비테이션 아세톤-펜테인 분별침전

Negative Pressure Cavitation Acetone-Pentane Fractional Precipitation for the Purification of Paclitaxel from Taxus chinensis

  • 민혜수 (공주대학교 화학공학부, 미래지속가능기술연구소) ;
  • 김진현 (공주대학교 화학공학부, 미래지속가능기술연구소)
  • Min, Hye-Su (Center for Future Sustainable Technology, Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Hyun (Center for Future Sustainable Technology, Department of Chemical Engineering, Kongju National University)
  • 투고 : 2022.04.01
  • 심사 : 2022.05.17
  • 발행 : 2022.11.01

초록

본 연구에서는 음압 캐비테이션 아세톤-펜테인 분별침전으로 Taxus chinensis로부터 파클리탁셀의 침전 효율을 획기적으로 개선하였다. 음압 -200 mmHg에서 침전할 경우 짧은 조업 시간(5분)에 대부분의 파클리탁셀을 회수(>99.9%) 할 수 있었다. 침전 속도 상수는 대조군 대비 1.512~5.073배(-50~-200 mmHg) 증가하였다. 음압으로 활성화에너지는 -3737~-6536 J/mol 감소하였으며, 이로 인해 침전 속도가 증가하였다. 또한 음압 도입으로 침전물 크기는 5.3배 감소하였으며, 파클리탁셀의 확산 계수는 7.0배 증가하였다.

This study presents the negative pressure cavitation acetone-pentane fractional precipitation to dramatically improve the precipitation efficiency of paclitaxel from Taxus chinensis. When paclitaxel was precipitated under a negative pressure of -200 mmHg, most paclitaxel (>99.9%) could be recovered in a short precipitation time (5 min). The precipitation rate constant increased by 1.512~5.073 times (at -50 mmHg to -200 mmHg) compared to the control. The activation energy decreased by -3,737~-6,536 J/mol due to negative pressure, which increased the precipitation rate. With the introduction of negative pressure, the precipitate size decreased by 5.3 times, and the diffusion coefficient of paclitaxel increased by 7.0 times.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(Grant Number: 2021R1A2C1003186).

참고문헌

  1. Montero, P., Perez-Leal, M., Perez-Fidalgo, J. A., Sanz, C., Estornut, C., Roger, I., Milara, J., Cervantes, A. and Cortijo, J., "Paclitaxel Induces Epidermal Molecular Changes and Produces Subclinical Alterations in the Skin of Gynecological Cancer Patients," Cancers, 14, 1146(2022).
  2. Zhu, L. and Chen, L., "Progress in Research on Paclitaxel and Tumor Immunotherapy," Cell. Mol. Biol. Lett., 24, 40(2019).
  3. Caillaud, M., Patel, N. H., White, A., Wood, M., Contreras K. M., Toma, W., Alkhlaif, Y., Roberts, J. L., Tran, T. H., Jackson, A. B., Poklis, J., Gewirtz, D. A. and Damaj, M. I., "Targeting Peroxisome Proliferator-Activated Receptor-α (PPAR-α) to Reduce Paclitaxel-induced Peripheral Neuropathy," Brain. Behav. Immun., 93, 172-185(2021). https://doi.org/10.1016/j.bbi.2021.01.004
  4. Bernabeu, E., Cagel, M., Lagomarsino, E., Moretton, M. and Chiappetta, D. A., "Paclitaxel: What has Been Done and the Challenges Remain Ahead," Int. J. Pharm., 526, 474-495(2017). https://doi.org/10.1016/j.ijpharm.2017.05.016
  5. Tan, L., Yang, L. L., Li, Y. J., Jiang, Z. F., Li, Q. Y., Ma, R. R., He, J. Y., Zhou, L. D., Zhang, Q. H. and Yuan, C. S., "Investigating two Distinct Dummy Templates Molecularly Imprinted Polymers as Paclitaxel Adsorbent in Synthesis System and Releaser in Biological Samples," Microchem. J., 165, 106042(2021).
  6. Jang, Y. S. and Kim, J. H., "Characteristics and Mechanism of Microwave-assisted Drying of Amorphous Paclitaxel for Removal of Residual Solvent," Biotechnol. Bioprocess Eng., 24, 529-535(2019). https://doi.org/10.1007/s12257-019-0076-8
  7. Ghorbani, M., Pourjafar, F., Saffari, M. and Asgari, Y., "Paclitaxel Resistance Resulted in a Stem-like State in Triple-negative Breast Cancer: A Systems Biology Approach," Meta Gene, 26, 100800(2020).
  8. Sun, T., Liu, Y., Li, M., Yu, H. and Piao, H., "Administration with Hyperoside Sensitizes Breast Cancer Cells to Paclitaxel by Blocking the TLR4 Signaling," Mol. Cell. Probes, 53, 101602(2020).
  9. https://www.360researchreports.com/global-paclitaxel-sales-market-16679274.
  10. Modarresi-Darreh, B., Kamali, K., Kalantar, S. M., Dehghanizadeh, H. and Aflatoonian, B., "Comparison of Synthetic and Natural Taxol Extracted from Taxus Plant (Taxus baccata) on Growth of Ovarian Cancer Cells Under in vitro Condition," Eurasia J. Biosci., 12, 413-418(2018).
  11. Oguzkan, S. B., Karagul, B., Uzun, A., Guler, O. O. and Ugras, H. I., "Pre-purification of An Anticancer Drug (paclitaxel) Obtained from Nut Husks," Int. J. Pharmacol., 14, 76-82(2018). https://doi.org/10.3923/ijp.2018.76.82
  12. Ochoa-Villarreal, M., Howat, S., Hong, S., Jang, M. O., Jin, Y. W., Lee, E. K. and Loake, G. J., "Plant Cell Culture Strategies for the Production of Natural Products," BMB Rep., 49, 149-158(2016). https://doi.org/10.5483/BMBRep.2016.49.3.264
  13. Kang, H. J. and Kim, J. H., "Cavitation Bubble- and Gas Bubble-induced Fractional Precipitation of Paclitaxel from Taxus chinensis", Process Biochem., 99, 316-323(2020). https://doi.org/10.1016/j.procbio.2020.09.020
  14. Seo, H. W. and Kim, J. H., "Ultrasound-assisted Fractional Precipitation of Paclitaxel from Taxus chinensis Cell Cultures," Process Biochem., 87, 238-243(2019). https://doi.org/10.1016/j.procbio.2019.09.019
  15. Oh, S. R. and Kim, J. H., "Ultrasound-based Fractional Precipitation for the Purification of (+)-dihydromyricetin," Korean J. Chem. Eng., 38, 480-484(2021). https://doi.org/10.1007/s11814-020-0734-8
  16. Lee, C. G. and Kim, J. H., "A Kinetic and Thermodynamic Study of Fractional Precipitation of Paclitaxel from Taxus chinensis", Process Biochem., 59, 216-222(2017). https://doi.org/10.1016/j.procbio.2017.05.016
  17. Kang, I. S. and Kim J. H., "Effect of Reactor Type on the Purification Efficiency of Paclitaxel in the Increased Surface Area Fractional Precipitation Process," Sep. Purif. Technol., 99, 14-19(2012). https://doi.org/10.1016/j.seppur.2012.08.025
  18. Kim, J. H., Kang, I. S., Choi, H. K., Hong, S. S. and Lee, H. S., "Fractional Precipitation for Paclitaxel Pre-purification from Plant Cell Cultures of Taxus chinensis", Biotechnol. Lett., 22, 1753-1756(2000). https://doi.org/10.1023/A:1005642001815
  19. Kim, J. H., Kang I. S., Choi, H. K., Hong, S. S. and Lee, H. S., "A Novel Prepurification for Paclitaxel from Plant Cell Cultures," Process Biochem., 37, 679-682(2002). https://doi.org/10.1016/S0032-9592(01)00247-3
  20. Jeon, S. I., Mun, S. and Kim, J. H., "Optimal Temperature Control in Fractional Precipitation for Paclitaxel Pre-purification," Process Biochem., 41, 276-280(2006). https://doi.org/10.1016/j.procbio.2005.07.016
  21. Jeon, Y. L. and Kim, J. H., "Precipitation Characteristics of Paclitaxel in Solvent Systems with Different Ion Exchange Resins," Korean J. Chem. Eng., 30, 1954-1959(2013). https://doi.org/10.1007/s11814-013-0136-2
  22. Sim, H. A., Lee, J. Y. and Kim, J. H., "Evaluation of a High Surface Area Acetone/pentane Precipitation Process for the Purification of Paclitaxel from Plant Cell Cultures," Sep. Purif. Technol., 89, 112-116(2012). https://doi.org/10.1016/j.seppur.2012.01.017
  23. Min, H. S. and Kim, J. H., "Kinetic and Thermodynamic Study of the Ultrasonic Acetone-pentane Fractional Precipitation of Paclitaxel from the Plant Cell Cultures of Taxus chinensis", Biotechnol. Bioprocess Eng., 26, 660-668(2021). https://doi.org/10.1007/s12257-020-0345-6
  24. Schueller, B. S. and Yang, R. T., "Ultrasound Enhanced Adsorption and Desorption of Phenol on Activated Carbon and Polymeric Resin," Ind. Eng. Chem. Res., 40, 4912-4918(2001). https://doi.org/10.1021/ie010490j
  25. Kang, H. J. and Kim, J. H., "Adsorption Kinetics, Mechanism, Isotherm, and Thermodynamic Analysis of Paclitaxel from Extracts of Taxus chinensis Cell Cultures Onto Sylopute," Biotechnol. Bioprocess Eng., 24, 513-521(2019). https://doi.org/10.1007/s12257-019-0001-1
  26. Kim, J. H., "Comparison of Conventional Solvent Extraction, Microwave-assisted Extraction, and Ultrasound-assisted Extraction Methods for Paclitaxel Recovery from Biomass," Korean Chem. Eng. Res., 58, 273-279(2020).
  27. Dalvi, S. V. and Dave, R. N., "Analysis of Nucleation Kinetics of Poorly Water-soluble Drugs in Presence of Ultrasound and Hydroxypropyl Methyl Cellulose During Antisolvent Precipitation," Int. J. Pharm., 387, 172-179(2010). https://doi.org/10.1016/j.ijpharm.2009.12.026
  28. Lee, S. H. and Kim, J. H., "Kinetic and Thermodynamic Characteristics of Microwave-assisted Extraction for the Recovery of Paclitaxel from Taxus chinensis", Process Biochem., 76, 187-193(2019). https://doi.org/10.1016/j.procbio.2018.11.010
  29. Yoo, K. W. and Kim, J. H., "Kinetics and Mechanism of Ultrasound-assisted Extraction of Paclitaxel from Taxus chinensis", Biotechnol. Bioprocess Eng., 23, 532-540(2018). https://doi.org/10.1007/s12257-018-0190-z
  30. Min, H. S. and Kim, J. H., "Negative Pressure Cavitation Fractional Precipitation for the Purification of Paclitaxel from Taxus chinensis", Korean J. Chem. Eng., 39, 58-62(2022). https://doi.org/10.1007/s11814-021-0959-1
  31. Dalvi, S. V. and Yadav, M. D., "Effect of Ultrasound and Stabilizers on Nucleation Kinetics of Curcumin During Liquid Antisolvent Precipitation," Ultrason. Sonochem., 24, 114-122(2015). https://doi.org/10.1016/j.ultsonch.2014.11.016
  32. Khadka, P., Ro, J., Kim, H., Kim, I., Kim, J. T., Kim, H., Cho, J. M., Yun, G. and Lee, J., "Pharmaceutical Particle Technologies: An Approach to Improve Drug Solubility, Dissolution and Bioavailability," Asian J. Pharm. Sci., 9, 304-316(2014). https://doi.org/10.1016/j.ajps.2014.05.005
  33. Ma, D., Marshall, J. S. and Wu, J., "Measurement of Ultrasound-enhanced Diffusion Coefficient of Nanoparticles in An Agarose Hydrogel," J. Acoust. Soc. Am., 114, 3496-3502(2018).
  34. Guo, Z., Jones, A. G. and Li, N., "The Effect of Ultrasound on the Homogeneous Nucleation of BaSO4 During Reactive Crystallization," Chem. Eng. Sci., 61, 1617-1626(2008). https://doi.org/10.1016/j.ces.2005.09.009
  35. Wolloch, L. and Kost, J., "The Importance of Microjet vs Shock Wave Formation in Sonophoresis," J. Control. Release, 148, 204-211(2010).;; https://doi.org/10.1016/j.jconrel.2010.07.106