DOI QR코드

DOI QR Code

Quntitative Analysis of Calcium Carbonate Polymorphs by Peak Area of XRD

XRD 피크 면적을 이용한 탄산칼슘 결정 형태의 정량분석

  • Bak, Young-Cheol (Department of Chemical Engineering / Engineering Research Institute, Gyeongsang National University)
  • 박영철 (경상국립대학교 화학공학과)
  • Received : 2022.03.31
  • Accepted : 2022.06.20
  • Published : 2022.11.01

Abstract

Calcium carbonate (CaCO3) exhibits three polymorphs: calcite with arhombohedral, vaterite with a spherical, and aragonite with a needle-like structure. Qualitative and quantitative analyses of the morphology of CaCO3 are very important to investigate the synthesis of single-crystal vaterite and aragonite. In this work, the polymorphs of calcium carbonate were quantitatively analyzed using XRD. Pure vaterite and pure aragonite were synthesized and the peak distribution of a single phase was analyzed. The vaterite fraction of a mixture of calcite and vaterite was calculated based on the intensity of a specific diffraction peak, and compared to the results based on the peak area. The mean value of fsV (the correction factor for the peak area of vaterite) was 0.654. The phase analysis of calcite-aragonite mixtures was performed, and the mean value of fsA (the correction factor for the peak area of aragonite) was obtained as 0.6713. Using these factors, Eq. (24)~Eq. (32) for the quantitative analysis based on the total peak area of XRD were derived to calculate the phase contents of ternary phase CaCO3. And three-component XRD section was defined considering overlapping sections.

탄산칼슘은 반응 초기 무정형의 탄산칼슘 ACC (amorphous calcium carbonate)에서 calcite, aragonite, vaterite의 세 가지 결정 형태로 변한다. 결정구조의 차이에 따라 물성이 달라지고, 이들 특성을 활용하여 다양한 분야에 응용이 가능하다. 따라서 단일 결정 구조를 가진 탄산칼슘 입자의 생성에 관한 연구가 활발히 진행되고 있다. 본 연구에서는 XRD 피크 면적을 이용한 탄산칼슘의 결정 형태별 정량분석이 이루어졌다. 순수한 vaterite와 aragonite 결정이 합성되고 이들 표준 시료의 XRD 피크 분포가 분석되었다. Calcite와 vaterite 표준 시료를 혼합 한 시료에 대한 피크 강도를 기준으로 한 경우와 피크 총면적을 기준으로 한 정량분석 값이 비교되었다. fsV (vaterite 전체 피크 면적 기준 보정계수) 평균값은 0.654로 구해졌다. Calcite와 aragonite 표준 시료를 혼합 한 시료에 대한 피크 총면적을 기준으로 한 정량분석에서 fsA (aragonite 전체 피크 면적 기준 보정계수) 평균값은 0.6713로 구하여졌다. 이들 보정계수를 적용하여 탄산칼슘 세 가지 결정에 대한 XRD 피크 총 면적을 기준으로 한 정량분석식 Eq. (24)~Eq. (32)이 제안되었고, 각 결정 사이의 중복 구간을 고려한 세 가지 결정에 대한 diffraction angle 구간 범위를 정하였다. 세 가지 표준 시료를 혼합한 시료에 대하여 XRD 분석을 하고 피크 면적 기준 정량분석치와 피크 높이 기준 분석치를 비교하였다.

Keywords

References

  1. Naka, K., "Delayed Action of Synthetic Polymers for Controlled Mineralization of Calcium Carbonate," Top Curr. Chem., 271, 119-154(2007). https://doi.org/10.1007/128_055
  2. Son, M., Kim, G., Han, K., Lee, M. W. and Lim, J. T., "Developments Status and Research Direction in the Mineral Carbonation," Korean Chem. Eng. Res., 55(2), 141-155(2017).
  3. Rao, M. S., "Kinetics and Mechanism of the Transformation of Vaterite to Cacite," Bulletin of the Chemical Society of Japan, 46, 1414-1417(1973). https://doi.org/10.1246/bcsj.46.1414
  4. Dupont, L., Portemer, F. and Figlarz, M. "Synthesis and Study of a well Crystallized CaCO3 Vaterite Showing a New Habitus," J. Mater. Chem., 7(5), 797-800(1997). https://doi.org/10.1039/a607761g
  5. Xie, A. J., Shen, Y. H., Zheng, C. Y., Yuan, Z. W., Zhu, X. M. and Yang, Y. M., "Crystal Growth of Calcium Carbonate with Various Morphologies in Different Amino Acid System," J. of Crystal Growth, 285, 436-443(2005). https://doi.org/10.1016/j.jcrysgro.2005.08.039
  6. Kim, J. H., Kim, J. M., Kim, W. S. and Kim, I. H., "Polymorphism of Calcium Carbonate Crystal by addition of various Amino," Korean Chem. Eng. Res., 47(2), 213-219(2009).
  7. Kim, J. H., Song, S. M., Kim, J. M., Kim, W. S. and Kim, I. H., "CaCO3 Crystallization with feeding of Aspartic Acid," Korean J. Chem. Eng., 27(5), 1532-1537(2010). https://doi.org/10.1007/s11814-010-0245-0
  8. Song, S. M., Seong, B. I., Koo, J. H. and Kim, I. H., "Effect of Aspartic Acid and Lysine on Polymorphism of Calcium Carbonate Crystal formed by Gas-liquid Reaction," Korean Chem. Eng. Res., 49(1), 109-113(2011). https://doi.org/10.9713/kcer.2011.49.1.109
  9. Vagenas, N. V., Gatsouli, A., Kontoyannis, C. G., "Quantitative Analysis of Synthesis calcium Carbonate polymorphs using FTIR Spectroscopy," Talanta, 59, 831-836(2003). https://doi.org/10.1016/S0039-9140(02)00638-0
  10. Hakanen, E. and Koskikallio, J., "Analysis of Aragonite and Calcite in Precipitated Calcium Carbonate by X-Ray diffraction and Infrared Spectroscopic Methods," Finn. Chem. Lett., 34-37(1982).
  11. Loftus, E., Rogers, K. and Lee-Thorp, J., "A Simple Method to Establish Calcite: Aragonite Ratios in Archaeological Mollusic Shells," J. Quaternary Sci., 30(8), 731-735(2015). https://doi.org/10.1002/jqs.2819
  12. Han, H. K., Jeon, J. S. and Kim, M. S., "Phase Change of Calcium Carbonate by Adding Polymers," Korean Chem. Eng. Res., 50(2), 300-303(2012). https://doi.org/10.9713/kcer.2012.50.2.300
  13. Park, W. K., Ko, S. J., Lee, S. W., Cho, K. H., Ahn, J. W. and Han, C., "Effects of Magnesium Chloride and Organic Additives on the Synthesis of Aragonite Precipitated Calcium Carbonate," J. of Crystal Growth, 310, 2593-2601(2008). https://doi.org/10.1016/j.jcrysgro.2008.01.023
  14. Ahn, J. W., Kim, J. H., Park, H. S., Kim, J. A., Han, C. and Kim, H., "Synthesis of Single Phase Aragonite Precipitated Calcium Carbonate in Ca(OH)2 - Na2CO3 - NaOH Reaction System," Korean Chem. Eng. Res., 22(6), 852-856(2005). https://doi.org/10.1007/BF02705664
  15. Kontoyannis, C. and Vagenas, N. V., "Calcium Carbonate Phase Analysis Using XRD and FT-Raman Spectroscopy," Analyst, 125, 251-255(2000). https://doi.org/10.1039/a908609i
  16. Lyu, S. G., Ryu, S. O., Park, Y. H., Rhew, J. H. and Sur, G. S., "Quantitative Analysis of Calcium Carbonate Polymorphs by XRay Diffraction," Korean Chem. Eng. Res., 36(4), 543-549(1998).
  17. Bak, Y. C., "Production of Vaterite Type Calcium Carbonate by using Oyster Shell Waste," Korean Chem. Eng. Res., 59(1), 118-126(2021).
  18. Moon, D. H., Murnandari, A., Salawu, O., Lee, C. W., Lee, W. H., Kim, Y. E., Park, K. T., Lee, J. E., Eo, J., Jeong, S. K. and Youn, M. H., "Formation of CaCO3 from Calcium Sources with Different Anions in Single Process of CO2 Capture-mineralization," Korean J. Chem. Eng., 37(10), 1709-1716(2020). https://doi.org/10.1007/s11814-020-0583-5
  19. Lyu, S. G,, Ryu, S. O., Park, Y, H. and Sur, G. S., "The Preparation of Spherical Vaterite in the Presence of NH4Cl by Carbonation Process," Korean Chem. Eng. Res., 36(2), 262-266(1998).
  20. Rao, M. S. and Yoganarasimhan, S. R., "Preparation of Pure Aragonite and its Transformation to Calcite," Am. Min., 50, 1489-1493(1965).
  21. Wada, N., Okazaki, M. and Tachikawa, S.,"Effects of Calciumbinding Polysaccharides from Calcareous Algae on Calcium Carbonate Polymorphs under Conditions of Double Diffusion," J. of Crystal Growth, 132, 115-121(1993). https://doi.org/10.1016/0022-0248(93)90253-S