DOI QR코드

DOI QR Code

Simulation of Bi-dispersed Electrorheological Fluids of Different Particle Sizes by the Extended Maxwell-Wagner Polarization Model

확장된 Maxwell-Wagner 분극 모델에 의한 서로 크기가 다른 입자들로 구성된 이성분계 전기유변 유체의 전산 모사

  • Kim, Young Dae (School of Chemical Engineering, Chonnam National University)
  • 김영대 (전남대학교 화학공학부)
  • Received : 2022.03.23
  • Accepted : 2022.06.27
  • Published : 2022.11.01

Abstract

The extended Maxwell-Wagner polarization model is employed to describe the ER(Electrorheological) behavior of bi-dispersed ER suspensions, and solutions to the equation of motion are obtained by dynamic simulation. Under the same particle volume fraction, it is found that the dynamic yield stresses of uniform size suspensions do not depend on the particle size. Compared with uniform size suspensions, the dynamic yield stress is reduced for ER fluids consisting of two kinds of particles with different sizes. Compared with the dynamic yield stress behavior, for ${\dot{\gamma}}^*$≧0.01 the shear stress shows different behaviors depending on the particle sizes and the raio of different size particles. The simulation results show the nonlinear ER behavior (∆𝛕 ∝ En, n ≈ 1.55) of the conducting particle ER suspensions.

전도성 입자로 제조된 전기유변(Electrorheological) 유체에서 입자 크기 및 서로 다른 크기의 입자들의 혼합이 전기유변 현상에 어떤 영향을 미치는지 살펴보기 위해 Onsager 이론으로 확장된 Maxwell-Wagner 분극 모델을 이용하여 전산 모사를 수행하였다. 전산 모사 결과 입자의 부피 분율이 같은 경우 단일한 크기의 입자로 구성된 균일한 전기유변 유체의 동적 항복응력은 입자 크기에 무관하였고, 크기가 서로 다른 입자들로 혼합된 비균일 전기유변 유체의 동적 항복응력은 균일한 전기유변 유체에 비해 감소하였다. 입자 부피 분율이 같은 경우 ${\dot{\gamma}}^*$≧0.01인 범위에서 큰 입자로 구성된 균일한 전기유변 유체가 작은 입자로 구성된 균일한 전기유변 유체보다 전단응력이 큰 것으로 나타났으며, ${\dot{\gamma}}^*$≧1인 경우에는 전기유변 유체는 큰 입자의 비율이 증가할수록 전단응력이 증가함을 보였다. 모든 입자 크기 및 조성에 대해 전도성 입자로 제조된 전기유변 유체의 특성인 비제곱 전기유변 현상(∆𝛕 ∝ En, n ≈ 1.55)도 예측하였다.

Keywords

References

  1. Winslow, W. M., "Induced Fibration of Suspensions," J. Appl. Phys., 20, 1137-1140(1949). https://doi.org/10.1063/1.1698285
  2. Koyanagi, K. Wang, X. and Karaki, T., "Research on Shear Stress of Electrorheological Fluid Containing Piezoelectric Powders," J. of Intell. Material Sys. and Struct., 33, 1101-1112(2022). https://doi.org/10.1177/1045389X211048219
  3. Dong, Y., Kim, H. and Choi, H., "Conducting Polymer-based Electro-responsive Smart Suspensions," Chemical Papers, 75, 5009-5034(2021). https://doi.org/10.1007/s11696-021-01550-w
  4. Deinega, Y. F. and Vinogradov, G. V., "Electric fields in Rheology of Disperse System," Rheol Acta., 23, 636-651(1984). https://doi.org/10.1007/BF01438804
  5. Shulman, Z. P., Gorodkin, R. G. and Korobko, E. V., "The Electrorheological Effects and Its Possible Uses," J. Non-Newt. Fluid Mech., 8, 29-41(1981). https://doi.org/10.1016/0377-0257(81)80003-1
  6. Hao, T., "Electrorheological Suspensions," Adv. Colloid Interface Sci., 97, 1-35(2002). https://doi.org/10.1016/S0001-8686(01)00045-8
  7. Liu, Y. D. and Choi, H. J., "Electrorheological Fluids: Smart Soft Matter and Characteristics," Soft Matter, 8, 11961-11978(2012). https://doi.org/10.1039/c2sm26179k
  8. Block, H. and Kelly, J. P., "Electro-rheology," J. Phys. D: Appl. Phys., 21, 1661-1677(1988). https://doi.org/10.1088/0022-3727/21/12/001
  9. Kim, D. H. and Kim, Y. D., "Electrorheological Properties of Polypyrrole and its Composite ER Fluids," J. Ind. Eng. Chem., 13(6), 879-894(2007).
  10. Filisko, F. E. and Razdilowski, L. H., "An intrinsic Mechanism for the Activity of Aumino-silicate Based Electrorheological Materials," J. Rheo., 34, 539-552(1990). https://doi.org/10.1122/1.550095
  11. Otsubo, Y., Sakine, M. and Katayama, S., "Effect of Adsorbed Water on the Electrorheology of Silica Suspensions," J. Coll. Interface Sci., 150, 324-330(1992). https://doi.org/10.1016/0021-9797(92)90201-V
  12. Kim, Y. D. and Klingenberg, D. J., "Two roles of Nonionic Surfactants on the Electrorheological Response," J. Coll. Interface Sci., 168, 568-578(1996).
  13. Dong, Y. Z., Kwon, S. H., Choi, H. J., Puthiaraj, P. and Ahn, W., "Electroresponsive Polymer-Inorganic Semiconducting Composite(MCTP-Fe3O4) Particles and Their Electrorheology," ACS OMEGA, 3, 17246-17253(2018). https://doi.org/10.1021/acsomega.8b02731
  14. Noh, J., Yoon, C. M. and Jang, J., "Enhanced Electrorheological Activity of Polyaniline Coated Mesoporous Silica with High Aspect Ratio," J. Coll. Interface Sci., 470, 237-244(2016). https://doi.org/10.1016/j.jcis.2016.02.061
  15. Lengalova, A., Pavlinek, B., Saha, P., Stejskal, J. and Quadrat, O., "Electrorheology of Polyaniline-coated Inorganic Particles in Silicone oil," J. Coll. Interface Sci., 258, 174-178(2003). https://doi.org/10.1016/S0021-9797(02)00091-7
  16. Kim, Y. D. and Kim, J. H., "Synthesis of Polypyrrole-polycaprolactone Composites by Emusion Polymerization and the Electrorheological Behavior of their Suspensions," Colloid Polym. Sci., 286, 631-637(2008). https://doi.org/10.1007/s00396-007-1802-x
  17. Kim, Y. D. and Kim, J. H., "Synthesis of Polypyrrole-SBS Composites and the Particle Size Effect on the Electroheological Properties of Their Suspensions," Synthetic Metals, 158, 479-483(2008). https://doi.org/10.1016/j.synthmet.2008.03.012
  18. Stangroom, J. E., "Basic Considerations in Flowing Electrorheologcal Fluids," J. Stat. Phys., 64, 1059-1072(1991). https://doi.org/10.1007/BF01048814
  19. Kim, Y. D., "A Surfactant Bridge Model for the Nonlinear Electrorheological Effects of Surfactant Activated ER Suspensions," J. Coll. Interface Sci., 236, 225-232(2001). https://doi.org/10.1006/jcis.2000.7408
  20. Klass, D. L. and Martinek, T. W., "Electro-viscous Fluids," J. Appl. Phys. 38, 67-75(1967). https://doi.org/10.1063/1.1709013
  21. Klingenberg, D. J., Swol, F. and Zukoski, C. F., "Small Shear Rate Response of Electrorheological Suspensions I," J. Chem. Phys., 94, 6160-6169(1991). https://doi.org/10.1063/1.460402
  22. Davis, L. C. and Ginder, J. M., "Elevtrostatic Forces in Electrorheological Fluids," Progress in Electrorheology, ed. by K.O. Havelka and F. E. Filisko, New York, Plenum, 107-111(1995).
  23. Foulc, J. N., Atten, P. and Felici, N., "Macroscopic Model of Interaction between Particles in an Electrotheological Fluid," J. Electrostatics, 33, 103-112(1994). https://doi.org/10.1016/0304-3886(94)90065-5
  24. Parthasarathy, M. and Klingenberg, D. J., "Electrorheology: Mechanisms and Models," Mater. Sci. Eng., R17, 57-103(1996). https://doi.org/10.1016/0927-796X(96)00191-X
  25. Wu, C. W. and Conrad, H., "Influenece of Mixed Particle Size om Electrorheological Response," J. Appl. Phys., 83, 3880-3884(1998). https://doi.org/10.1063/1.366621
  26. Ota, M. and Miyamoto, T., "Optimum Particle Size Distribution of an Electrorheological Fluid," J. Appl. Phys., 76, 5528-35532 (1994). https://doi.org/10.1063/1.357154
  27. Mori, Y., Tsunamoto, T. and Nakayama, H., "Computer Simulation of Electrorheological Fluids in the Binary System of Particle Size," Int. J. Mod. Phys. B, 13, 1822-1827(1999). https://doi.org/10.1142/S0217979299001843
  28. Tan, Z. Zou, X. Zhang, W. and Jin, Z., "Influences of the Size and Dielectric Properties of Particles on Electroeheological Response," Physical Review E, 59:3, 3177-3181(1999). https://doi.org/10.1103/PhysRevE.59.3177
  29. Kim, Y. D., "Simulation of Electrorheological fluids by the Extended Maxwell-Wagner Polarization model with Onsager Theory," Korean Chem. Eng. Res., 58, 480-485(2020).
  30. Marshall, L. and Zukoski, C. F., "Effects of Electric Fields on the Rheology of Non-aqueous Concentrated Suspensions," J. Chem. Soc., 85, 2785-2795(1989).
  31. Kim, Y. D., Choi, G. J., Sim, S. J. and Cho, Y. S., "Electrorheological Suspensions of Two Polarizable Particles," Korean J. Chem. Eng., 16, 338-342(1999). https://doi.org/10.1007/BF02707122
  32. Onsagar, L., "Deviation from Ohm's Law in Weak Electrolytes," J. Chem. Phys., 2, 599-615(1934). https://doi.org/10.1063/1.1749541