DOI QR코드

DOI QR Code

Arrhythmia Classification using GAN-based Over-Sampling Method and Combination Model of CNN-BLSTM

GAN 오버샘플링 기법과 CNN-BLSTM 결합 모델을 이용한 부정맥 분류

  • Cho, Ik-Sung (School of Interdisciplinary Studies, Daegu University) ;
  • Kwon, Hyeog-Soong (Department of IT Engineering, Pusan National University)
  • Received : 2022.08.01
  • Accepted : 2022.09.21
  • Published : 2022.10.31

Abstract

Arrhythmia is a condition in which the heart has an irregular rhythm or abnormal heart rate, early diagnosis and management is very important because it can cause stroke, cardiac arrest, or even death. In this paper, we propose arrhythmia classification using hybrid combination model of CNN-BLSTM. For this purpose, the QRS features are detected from noise removed signal through pre-processing and a single bit segment was extracted. In this case, the GAN oversampling technique is applied to solve the data imbalance problem. It consisted of CNN layers to extract the patterns of the arrhythmia precisely, used them as the input of the BLSTM. The weights were learned through deep learning and the learning model was evaluated by the validation data. To evaluate the performance of the proposed method, classification accuracy, precision, recall, and F1-score were compared by using the MIT-BIH arrhythmia database. The achieved scores indicate 99.30%, 98.70%, 97.50%, 98.06% in terms of the accuracy, precision, recall, F1 score, respectively.

부정맥이란 심장이 불규칙한 리듬이나 비정상적인 심박동수를 갖는 것을 말하며, 뇌졸중, 심정지 등을 유발하거나 사망에도 이를 수 있는 만큼, 조기 진단과 관리가 무엇보다 중요하다. 본 연구에서는 심전도 신호의 QRS 특징 추출에 적합한 CNN과 기존 LSTM의 직전 패턴의 수렴 한계를 해결할 수 있는 BLSTM을 연결한 CNN-BLSTM 결합 모델을 이용한 부정맥 분류 방법을 제안한다. 이를 위해 먼저 전처리 과정을 통해 잡음을 제거한 심전도 신호에서 QRS 특징점을 검출하고 단일 비트 세그먼트를 추출하였다. 이때 데이터의 불균형 문제를 해결하기 위해 GAN 오버샘플링 기법을 적용하였다. 이 후 합성곱 계층을 통해 부정맥 신호의 패턴을 정밀하게 추출하도록 구성하고 이를 BLSTM의 입력으로 사용한 후 매개변수를 학습시키고 검증 데이터로 학습 모델을 평가한 후 부정맥 분류의 정확도를 확인하였다. 제안한 방법의 우수성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스를 이용하여 분류의 정확도, 정밀도, 재현율, F1-score를 비교하였다. 성능평가 결과 각각 99.30%, 98.70%, 97.50%, 98.06%로 우수한 분류율을 나타내는 것을 확인할 수 있었다.

Keywords

References

  1. J. Yang and R. Yan, "A Multidimensional Feature Extraction and Selection Method for ECG Arrhythmias Classification," IEEE Sensors Journal, vol. 21, no. 13, pp. 14180-14190, Jul. 2021. https://doi.org/10.1109/JSEN.2020.3047962
  2. H. Yang and Z. Wei, "A Novel Approach for Heart Ventricular and Atrial Abnormalities Detection via an Ensemble Classification Algorithm Based on ECG Morphological Features," IEEE Access, vol. 9, pp. 54757- 54774, Apr. 2021. https://doi.org/10.1109/ACCESS.2021.3071273
  3. D. Lai, X. Fan, Y. Zhang, and W. Chen, "Intelligent and Efficient Detection of Life-Threatening Ventricular Arrhythmias in Short Segments of Surface ECG Signals," IEEE Sensors Journal, vol. 21, no. 13, pp. 14110-14120, Jul. 2021. https://doi.org/10.1109/JSEN.2020.3031597
  4. M. J. Goldman, Principles of Clinical Electrocardiography, Los Altos California: Lange Medical Pubns, 1986.
  5. E. Essa and X. Xie, "An Ensemble of Deep Learning-Based Multi-Model for ECG Heartbeats Arrhythmia Classification," IEEE Access, vol. 9, pp. 103452-103464, Jul. 2021. https://doi.org/10.1109/ACCESS.2021.3098986
  6. W. Li, "Deep Intermediate Representation and In-Set Voting Scheme for Multiple-Beat Electrocardiogram Classification," IEEE Sensors Journal, vol. 19, no. 16, pp. 6895 - 6904, Apr. 2019. https://doi.org/10.1109/JSEN.2019.2910853
  7. M. Altuve and F. Hernandez, "Multiclass Classification of Cardiac Rhythms on Short Single Lead ECG Recordings using Bidirectional Long Short-Term Memory Networks," IEEE Latin America Transactions, vol. 19, no. 7, pp. 1207-1216, Jul. 2021. https://doi.org/10.1109/TLA.2021.9461850
  8. D. Jyotishi and S. Dandapat, "An LSTM-Based Model for Person Identification Using ECG Signal," IEEE Sensors Letters, vol. 4, no. 8, pp. 1-4, Aug. 2020.
  9. I. S. Cho and H. S. Kwon "Arrhythmia Classification using Hybrid Combination Model of CNN-LSTM," Journal of Korea Institute of Information and Communication Engineering, vol. 26, no. 1, pp. 76-84, Jan. 2022.
  10. X. Wang, B. Chen, M. Zeng, Y. Wang, H. Liu, R. Liu, L. Tian, and X. Lu, "An ECG Signal Denoising Method Using Conditional Generative Adversarial Net," IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 7, pp. 2929-2940, Jul. 2022. https://doi.org/10.1109/JBHI.2022.3169325
  11. M. Zouri and A. Ferworn, "An Approach for Automatic Discovery of Rules Based on ECG Data Using Learning Classifier Systems," in Proceedings of 2022 IEEE World AI IoT Congress (AIIoT), Seattle: WA, USA, pp. 145-154, 2022.
  12. R. He, Y. Liu, K. Wang, N. Zhao, Y. Yuan, Q. Li, and H. Zhang, "Automatic Cardiac Arrhythmia Classification Using Combination of Deep Residual Network and Bidirectional LSTM," IEEE Access, vol. 7, pp. 102119- 102135, Jul. 2019. https://doi.org/10.1109/ACCESS.2019.2931500
  13. F. Qiao, B. Li, Y. Zhang, H. Guo, W. Li, and S. Zhou, "A Fast and Accurate Recognition of ECG Signals Based on ELM-LRF and BLSTM Algorithm," IEEE Access, vol. 8, pp. 71189-71198, Apr. 2020. https://doi.org/10.1109/ACCESS.2020.2987930