DOI QR코드

DOI QR Code

HSPF 예측 정확도 제고를 위한 토지피복 및 토양 특성 자료의 활용

Application of land cover and soil information for improvement of HSPF modeling accuracy

  • 강유은 (충남대학교 환경IT융합공학과) ;
  • 김재영 (충남대학교 환경공학) ;
  • 서동일 (충남대학교 환경공학)
  • Kang, Yooeun (Department of Environmental & IT Engineering, Chungnam National University) ;
  • Kim, Jaeyoung (Department of Environmental Engineering, Chungnam National University) ;
  • Seo, Dongil (Department of Environmental Engineering, Chungnam National University)
  • 투고 : 2022.09.02
  • 심사 : 2022.10.02
  • 발행 : 2022.10.31

초록

HSPF (Hydrological Simulation Program-Fortran)는 미국과 우리나라에서 특히 많이 사용하는 유역 수문 및 수질 모델이다. 이 모델은 분산형 모델로서 각 유역의 지형, 지질 및 오염부하특성을 정확하게 반영하는 것이 매우 중요하다. 본 연구에서는 HSPF의 매개변수 중 조도계수(NSUR), 침투(INFILT), 토양 하부의 증발산(LZETP)에 대하여 실제 용담댐 유역의 토지피복과 토양의 종류에 따라 값을 차등 입력함으로써 단일 값을 입력했을 때에 대비하여 유량, 수문 성분 및 수질의 정확도 향상 여부를 분석하였다. 조도계수와 식물의 밀도를 의미하는 토양 하부의 증발산은 토지피복의 종류에 따라 입력하였고, 침투는 유역의 수문학적 토양 그룹의 분포에 따라 입력하였다. 분석 결과 유량과 수질은 단일 값을 입력했을 때보다 각 매개변수를 토지피복과 토양의 종류별로 차등 설정하였을 때 정확도가 향상되는 것으로 나타났다. 또한, 조도계수(NSUR) 입력에 의해 지표유출과 첨두유량이 증가하였고, 침투(INFILT) 입력에 의해 기저유출이 감소하고 지표유출이 증가하였으며, 증발산(LZETP) 차등 입력으로 중간유출과 지표유출이 증가하고 지하수유출이 감소하는 등 각 매개변수의 설정이 유역 말단의 유량뿐 아니라 모든 수문 성분의 구성 비율에 영향을 미친다는 것을 확인하였다. 이러한 결과는 유역의 토지피복 및 토양의 비균질한 특성을 정확하게 표현하는 것이 이 모델을 이용한 유량 및 수질 예측의 정확도 제고에 중요하다는 것을 시사한다.

This study aims to improve the runoff modeling accuracy of a basin using Hydrological Simulation Program-FORTRAN (HSPF) model by considering nonhomogeneous characteristics of a basin. By entering classified values according to the various types of land cover and soil to the parameters in HSPF-roughness coefficient (NSUR), infiltration (INFILT), and evapotranspiration (LZETP)- the heterogeneity of the Yongdam Dam basin was reflected in the model. The results were analyzed and compared with the one where the parameters were set as a single value throughout the basin. The flow rate and water quality simulation results showed improved results when classified parameters were used by land cover and soil type than when single values were used. The parameterization changed not only the flow rate, but also the composition ratio of each hydrologic components such as surface runoff, baseflow, and evapotranspiration, which shows the impact of the value set to a parameter on the entire hydrological process. This implies the importance of considering the heterogeneous characteristics of the land cover and soil of the basin when setting the parameters in a model.

키워드

과제정보

본 성과는 환경부의 재원을 지원받아 한국환경산업기술원 "신기후체제 대응 환경기술개발산업"의 연구개발을 통해 창 출되었습니다(RE202201636).

참고문헌

  1. Ahn, S.R., Park, G.A., Jang, C.H., and Kim, S.J. (2013). "Assessment of climate change impact on evapotranspiration and soil moisture in a mixed forest catchment using spatially calibrated SWAT model." Jounal of Korea Water Resources Association, Vol. 16, No. 6, pp. 569-583.
  2. Albek, M., Ogutveren, U.B., and Albek, E. (2004). "Hydrological modeling of Seydi Suyu watershed (Turkey) with HSPF." Journal of Hydrology, Vol. 285, No. 1-4, pp. 260-271. https://doi.org/10.1016/j.jhydrol.2003.09.002
  3. Amirhossien, F., Alireza, F., Kazem, J., and Mohammadbagher, S. (2015). "A comparison of ANN and HSPF models for runoff simulation in Balkhichai River Watershed, Iran." American Journal of Climate Change, Vol. 4, pp. 203-216. https://doi.org/10.4236/ajcc.2015.43016
  4. Arcement, G.J., and Schneider, V.R. (1989). Guide for selecting manning's roughness coefficients for natural channels and flood plains. United States Geological Survey, Denver, CO, U.S.
  5. Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R., Van Griensven, A., and Van Liew, M.W. (2012). "SWAT: Model use, calibration, and validation." Transactions of the ASABE, Vol. 55, No. 4, pp. 1491-1508. https://doi.org/10.13031/2013.42256
  6. Bicknell, B.R., Imhoff, J.C., Kittle, J.L., Jobes, T.H., and Donigian, A.S. (2001). Hydrological simulation program-fortran User's manual version 12. National Exposure Research Laboratory, Office of Research and Development, U.S. EPA, Athens, GA, U.S.
  7. Donigian, A.S., and Davis, H.H. (1978). User's manual for agricultural runoff management (ARM) model. Environmental Protection Agency, Office of Research and Development, Athens, GA, U.S.
  8. Engelmann, C.J., Ward, A.D., Christy, A.D., and Bair, E.S. (2002). "Application of the BASINS database and NPSM model on a small Ohio watershed." Journal of the American Water Resources Association, Vol. 38, No. 1, pp. 289-300. https://doi.org/10.1111/j.1752-1688.2002.tb01552.x
  9. Han, J.H., Ryu, T.S., Lim, K.J., and Jung, Y.H. (2016). "A review of baseflow analysis techniques of watershed-scale runoff models." Journal of The Korean Society of Agricultural Engineers, Vol. 58, No. 4, pp. 75-83. https://doi.org/10.5389/KSAE.2016.58.4.075
  10. Jang, J., Yoon, C., Jung, K., and Jeon, J. (2006). "Pollutant loading estimate from Yongdam watershed using BASINS/HSPF." Korean Journal of Limnology, Vol. 39, No. 2, pp. 187-197.
  11. Kim, B., Kim, H., and Seoh, B. (2004). "Evaluation of the evapotranspiration models in the SLURP hydrological model." Jounal of Korea Water Resources Association, Vol. 37, No. 9, pp. 745-758. https://doi.org/10.3741/JKWRA.2004.37.9.745
  12. Kim, B., Kim, S., Kim, H., and Jun, H. (2010a). "An impact assessment of climate and landuse change on water resources in t he Han River." Journal of Korea Water Resources Association, Vol. 43, No. 3, pp. 309-323. https://doi.org/10.3741/JKWRA.2010.43.3.309
  13. Kim, J., and Choi, C. (2013). "Impact of changes in climate and land use/land cover change under climate change scenario on streamflow in the basin." Journal of the Korean Society for Geospatial Information System, Vol. 21, No. 2, pp. 107-116. https://doi.org/10.7319/kogsis.2013.21.2.107
  14. Kim, J., Lee, J., and Ahn, J. (2010b). "Optimization for roughness coefficient of river in Korea-review of application and han river project water elevation." Journal of Civil and Environmental Engineering Research, Vol. 30, No. 6B, pp. 571-578.
  15. Kim, N., Shin, A., and Kim, C. (2009). "Comparison of SWAT-K and HSPF for hydrological components Modeling in the Chungju dam watershed." Journal of Environmental Science International, Vol. 18, No. 6, pp. 609-619. https://doi.org/10.5322/JES.2009.18.6.609
  16. Kim, S., Kim, J., Kang, H., Jang, W.S., and Lim, K.J. (2022). "Analysis of water balance changes and parameterization reflecting soil characteristics in a hydrological simulation program - FORTRAN model." Water, Vol. 14, No. 6, 990. https://doi.org/10.3390/w14060990
  17. Kim, S., and Park, S. (2004). "Calibration and validation of HSPF model to estimate the pollutant loads from rural small watershed." Journal of Korean Water Resource Association, Vol. 37, No. 8, pp. 643-651. https://doi.org/10.3741/JKWRA.2004.37.8.643
  18. Lee, H.A. (2012). Catchment-scale hydrological response to land use change-a case study for the Wangsuk river basin. Master Thesis, Seoul National University.
  19. Lee, J., Lee, S., and Kwak, C. (2016). "A study on the runoff parameter estimation in the distributed model." Journal of the Korean Society of Hazard Mitigation, Vol. 16, No. 3, pp. 55-66.
  20. Lee, Y.G., Hwang, S.C., Hwang, H.D., Na, J.Y., Yu, N.Y., and Lee, H.J. (2018). "Water quality Modelling of flood control dam by HSPF and EFDC." Journal of Environmental Impact Assessment, Vol. 27, No. 3, pp. 251-266. https://doi.org/10.14249/EIA.2018.27.3.251
  21. Ministry of Construction and Transportation (MOCT) and Korea Water Resources Corporation (KWRC) (2006). Geum River basin investigation report.
  22. Mishra, A., Kar, S., and Raghuwanshi, N. (2009). "Modeling nonpoint source pollutant losses from a small watershed using HSPF model." Journal of Environmental Engineering, Vol. 135, No. 2, pp. 92-100. https://doi.org/10.1061/(ASCE)0733-9372(2009)135:2(92)
  23. Moriasi, D.N., Gitau, M.W., Pai, N., and Daggupati, P. (2015). "Hydrologic and water quality models: Performance measures and evaluation criteria." Transactions of the ASABE, Vol. 58, No. 6, pp. 1763-1785. https://doi.org/10.13031/trans.58.10715
  24. Park, M.J., Kwon, H.J., and Kim, S.J. (2005). "Analysis of impacts of land cover change on runoff using HSPF model." Journal of Korea Water Resources Association, Vol. 38, No. 6, pp. 495-504. https://doi.org/10.3741/JKWRA.2005.38.6.495
  25. Park, Y.S., Ryu, J., Kim, J., Kum, D., and Lim, K.J. (2020). "Review of features and applications of watershed-scale modeling, and improvement strategies of it in South-Korea." Journal of Korean Society on Water Environment, Vol. 36, No. 6, pp. 592-610. https://doi.org/10.15681/KSWE.2020.36.6.592
  26. Raes, D. (2012). The ETo calculator reference manual version 3.2. Food and Agriculture Organization of the United States, Rome, Italy.
  27. Seo, D., Kim, J., and Chang, E. (2007). "Application of medium class land cover maps to AVSWAT2000 for the prediction of inflow, CBOD, TN and TP for Yongdam Lake, Korea." Water Science and Technology, Vol. 55, No. 1-2, pp. 513-518. https://doi.org/10.2166/wst.2007.011
  28. Singh, J., Knapp, H.V., Arnold, J., and Demissie, M. (2005). "Hydrological modeling of the Iroquois river watershed using HSPF and SWAT." Journal of the American Water Resources Association, Vol. 41, No. 2, pp. 343-360. https://doi.org/10.1111/j.1752-1688.2005.tb03740.x
  29. U.S. Environmental Protection Agency (U.S. EPA) (2000). BASINS technical note 6. Washington, D.C., U.S.
  30. U.S. Environmental Protection Agency (U.S. EPA) (2019). Better assessment science integrating point and nonpoint sources (BASINS) version 4.5. National Exposure Research Laboratory, Research Triangle Park, NC, U.S.
  31. Vieux, B.E. (2005). Vflo TM 3.0 desktop user manual. Vieux & Associates, Inc., OK, U.S.
  32. Yang, H. (2007). "Water balance change of watershed by climate change." Jounal of the Korean Geographical Society, Vol. 42, No. 3, pp. 405-420.