DOI QR코드

DOI QR Code

The Peripheral Immune Landscape in a Patient with Myocarditis after the Administration of BNT162b2 mRNA Vaccine

  • Yoon, Bo Kyung (Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine) ;
  • Oh, Tae Gyu (Gene Expression Laboratory, Salk Institute for Biological Studies) ;
  • Bu, Seonghyeon (Division of Cardiology, Department of Internal Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital) ;
  • Seo, Kyung Jin (Department of Pathology, The Catholic University of Korea, Uijeongbu St. Mary's Hospital) ;
  • Kwon, Se Hwan (Department of Radiology, Kyung Hee University Medical Center) ;
  • Lee, Ji Yoon (KYNOGEN Co.) ;
  • Kim, Yeumin (KYNOGEN Co.) ;
  • Kim, Jae-woo (Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine) ;
  • Ahn, Hyo-Suk (Division of Cardiology, Department of Internal Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital) ;
  • Fang, Sungsoon (Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine)
  • Received : 2022.02.24
  • Accepted : 2022.06.09
  • Published : 2022.10.31

Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has posed a serious threat to global public health. A novel vaccine made from messenger RNA (mRNA) has been developed and approved for use at an unprecedented pace. However, an increased risk of myocarditis has been reported after BNT162b2 mRNA vaccination due to unknown causes. In this study, we used single-cell RNA sequencing and single-cell T cell receptor sequencing analyses of peripheral blood mononuclear cells (PBMCs) to describe, for the first time, changes in the peripheral immune landscape of a patient who underwent myocarditis after BNT162b2 vaccination. The greatest changes were observed in the transcriptomic profile of monocytes in terms of the number of differentially expressed genes. When compared to the transcriptome of PBMCs from vaccinated individuals without complications, increased expression levels of IL7R were detected in multiple cell clusters. Overall, results from this study can help advance research into the pathogenesis of BNT162b2-induced myocarditis.

Keywords

Acknowledgement

This study was supported by Korea Health Technology R&D Project (HR18C0012) from the Ministry of Health & Welfare to S.F. and the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (NRF-2018R1A5A2025079). B.K.Y. was supported by the Seok-San Biomedical Science Scholarship, Yonsei University College of Medicine.

References

  1. Arunachalam, P.S., Scott, M.K.D., Hagan, T., Li, C., Feng, Y., Wimmers, F., Grigoryan, L., Trisal, M., Edara, V.V., Lai, L., et al. (2021). Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature 596, 410-416. https://doi.org/10.1038/s41586-021-03791-x
  2. Barda, N., Dagan, N., Ben-Shlomo, Y., Kepten, E., Waxman, J., Ohana, R., Hernan, M.A., Lipsitch, M., Kohane, I., Netzer, D., et al. (2021). Safety of the BNT162b2 mRNA Covid-19 vaccine in a nationwide setting. N. Engl. J. Med. 385, 1078-1090. https://doi.org/10.1056/NEJMoa2110475
  3. Bhusal, R.P., Foster, S.R., and Stone, M.J. (2020). Structural basis of chemokine and receptor interactions: key regulators of leukocyte recruitment in inflammatory responses. Protein Sci. 29, 420-432. https://doi.org/10.1002/pro.3744
  4. Colpitts, S.L., Dalton, N.M., and Scott, P. (2009). IL-7 receptor expression provides the potential for long-term survival of both CD62Lhigh central memory T cells and Th1 effector cells during Leishmania major infection. J. Immunol. 182, 5702-5711. https://doi.org/10.4049/jimmunol.0803450
  5. Damas, J.K., Waehre, T., Yndestad, A., Otterdal, K., Hognestad, A., Solum, N.O., Gullestad, L., Froland, S.S., and Aukrust, P. (2003). Interleukin-7-mediated inflammation in unstable angina: possible role of chemokines and platelets. Circulation 107, 2670-2676. https://doi.org/10.1161/01.CIR.0000070542.18001.87
  6. Egorov, E.S., Kasatskaya, S.A., Zubov, V.N., Izraelson, M., Nakonechnaya, T.O., Staroverov, D.B., Angius, A., Cucca, F., Mamedov, I.Z., Rosati, E., et al. (2018). The changing landscape of naive T cell receptor repertoire with human aging. Front. Immunol. 9, 1618. https://doi.org/10.3389/fimmu.2018.01618
  7. Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., Brenner, M., Loh, P.R., and Raychaudhuri, S. (2019). Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289-1296. https://doi.org/10.1038/s41592-019-0619-0
  8. Lawson, B.R., Gonzalez-Quintial, R., Eleftheriadis, T., Farrar, M.A., Miller, S.D., Sauer, K., McGavern, D.B., Kono, D.H., Baccala, R., and Theofilopoulos, A.N. (2015). Interleukin-7 is required for CD4(+) T cell activation and autoimmune neuroinflammation. Clin. Immunol. 161, 260-269. https://doi.org/10.1016/j.clim.2015.08.007
  9. Le Bert, N., Tan, A.T., Kunasegaran, K., Tham, C.Y.L., Hafezi, M., Chia, A., Chng, M.H.Y., Lin, M., Tan, N., Linster, M., et al. (2020). SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 584, 457-462. https://doi.org/10.1038/s41586-020-2550-z
  10. Li, C., Chen, Y., Zhao, Y., Lung, D.C., Ye, Z., Song, W., Liu, F.F., Cai, J.P., Wong, W.M., Yip, C.C., et al. (2022). Intravenous injection of COVID-19 mRNA vaccine can induce acute myopericarditis in mouse model. Clin. Infect. Dis. 74, 1933-1950. https://doi.org/10.1093/cid/ciab707
  11. Linderman, G.C., Zhao, J., Roulis, M., Bielecki, P., Flavell, R.A., Nadler, B., and Kluger, Y. (2022). Zero-preserving imputation of single-cell RNA-seq data. Nat. Commun. 13, 192. https://doi.org/10.1038/s41467-021-27729-z
  12. Luo, L., Liang, W., Pang, J., Xu, G., Chen, Y., Guo, X., Wang, X., Zhao, Y., Lai, Y., Liu, Y., et al. (2021). Dynamics of TCR repertoire and T cell function in COVID-19 convalescent individuals. Cell Discov. 7, 89.
  13. Makunts, T., Saunders, I.M., Cohen, I.V., Li, M., Moumedjian, T., Issa, M.A., Burkhart, K., Lee, P., Patel, S.P., and Abagyan, R. (2021). Myocarditis occurrence with cancer immunotherapy across indications in clinical trial and post-marketing data. Sci. Rep. 11, 17324. https://doi.org/10.1038/s41598-021-96467-5
  14. Mitchell, A.M. and Michels, A.W. (2020). T cell receptor sequencing in autoimmunity. J. Life Sci. (Westlake Village) 2, 38-58.
  15. Polack, F.P., Thomas, S.J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J.L., Perez Marc, G., Moreira, E.D., Zerbini, C., et al. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603-2615. https://doi.org/10.1056/NEJMoa2034577
  16. Shah, M. and Woo, H.G. (2021). Molecular perspectives of SARS-CoV-2: pathology, immune evasion, and therapeutic interventions. Mol. Cells 44, 408-421. https://doi.org/10.14348/molcells.2021.0026
  17. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., 3rd, Hao, Y., Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive integration of single-cell data. Cell 177, 1888-1902.e21. https://doi.org/10.1016/j.cell.2019.05.031
  18. Sureshchandra, S., Lewis, S.A., Doratt, B.M., Jankeel, A., Coimbra Ibraim, I., and Messaoudi, I. (2021). Single-cell profiling of T and B cell repertoires following SARS-CoV-2 mRNA vaccine. JCI Insight 6, e153201. https://doi.org/10.1172/jci.insight.153201
  19. Turner, M.D., Nedjai, B., Hurst, T., and Pennington, D.J. (2014). Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta 1843, 2563-2582. https://doi.org/10.1016/j.bbamcr.2014.05.014
  20. Wang, G.L., Gao, H.X., Wang, Y.L., Wei, X., Liu, Y.Z., Lu, J.H., Li, L., Wang, H.B., Zhao, L., Rong, Y.X., et al. (2021). Serum IP-10 and IL-7 levels are associated with disease severity of coronavirus disease 2019. Cytokine 142, 155500. https://doi.org/10.1016/j.cyto.2021.155500