DOI QR코드

DOI QR Code

Establishment and Characterization of Carboplatin-Resistant Retinoblastoma Cell Line

  • Cho, Chang Sik (Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital) ;
  • Jo, Dong Hyun (Department of Anatomy and Cell Biology, Seoul National University College of Medicine) ;
  • Kim, Jin Hyoung (BIOGENO KOREA, Ltd.) ;
  • Kim, Jeong Hun (Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital)
  • Received : 2021.11.05
  • Accepted : 2022.05.29
  • Published : 2022.10.31

Abstract

Carboplatin-based chemotherapy is the primary treatment option for the management of retinoblastoma, an intraocular malignant tumor observed in children. The aim of the present study was to establish carboplatin-resistant retinoblastoma cell lines to facilitate future research into the treatment of chemoresistant retinoblastoma. In total, two retinoblastoma cell lines, Y79 and SNUOT-Rb1, were treated with increasing concentrations of carboplatin to develop the carboplatin-resistant retinoblastoma cell lines (termed Y79/CBP and SNUOT-Rb1/CBP, respectively). To verify resistance to carboplatin, the degree of DNA fragmentation and the expression level of cleaved caspase-3 were evaluated in the cells, following carboplatin treatment. In addition, the newly developed carboplatin-resistant retinoblastoma cells formed in vivo intraocular tumors more effectively than their parental cells, even after the intravitreal injection of carboplatin. Interestingly, the proportion of cells in the G0/G1 phase was higher in Y79/CBP and SNUOT-Rb1/CBP cells than in their respective parental cells. In line with these data, the expression levels of cyclin D1 and cyclin D3 were decreased, whereas p18 and p27 expression was increased in the carboplatin-resistant cells. In addition, the expression levels of genes associated with multidrug resistance were increased. Thus, these carboplatin-resistant cell lines may serve as a useful tool in the study of chemoresistance in retinoblastoma and for the development potential therapeutics.

Keywords

Acknowledgement

This work was supported by the Development of Platform Technology for Innovative Medical Measurement funded by Korea Research Institute of Standards and Science (KRISS-GP2022-0006), The Bio & Medical Technology Development Program of the National Research Foundation, MSIP (No. 2018M3D1A1058826), and the Seoul National University Hospital Research (No. 04-2019-0280).

References

  1. Abramson, D.H., Shields, C.L., Munier, F.L., and Chantada, G.L. (2015). Treatment of retinoblastoma in 2015: agreement and disagreement. JAMA Ophthalmol. 133, 1341-1347. https://doi.org/10.1001/jamaophthalmol.2015.3108
  2. Asada, N., Tsuchiya, H., Ueda, Y., and Tomita, K. (1998). Establishment and characterization of an acquired cisplatin-resistant subline in a human osteosarcoma cell line. Anticancer Res. 18(3A), 1765-1768.
  3. Behrens, B.C., Hamilton, T.C., Masuda, H., Grotzinger, K.R., Whang-Peng, J., Louie, K.G., Knutsen, T., McKoy, W.M., Young, R.C., and Ozols, R.F. (1987). Characterization of a cis-diamminedichloroplatinum(II)-resistant human ovarian cancer cell line and its use in evaluation of platinum analogues. Cancer Res. 47, 414-418.
  4. Bond, W.S., Akinfenwa, P.Y., Perlaky, L., Hurwitz, M.Y., Hurwitz, R.L., and Chevez-Barrios, P. (2013). Tumorspheres but not adherent cells derived from retinoblastoma tumors are of malignant origin. PLoS One 8, e63519. https://doi.org/10.1371/journal.pone.0063519
  5. Chan, H.S., Lu, Y., Grogan, T.M., Haddad, G., Hipfner, D.R., Cole, S.P., Deeley, R.G., Ling, V., and Gallie, B.L. (1997). Multidrug resistance protein (MRP) expression in retinoblastoma correlates with the rare failure of chemotherapy despite cyclosporine for reversal of P-glycoprotein. Cancer Res. 57, 2325-2330.
  6. Chan, H.S., Thorner, P.S., Haddad, G., and Gallie, B.L. (1991). Multidrugresistant phenotype in retinoblastoma correlates with P-glycoprotein expression. Ophthalmology 98, 1425-1431. https://doi.org/10.1016/S0161-6420(91)32134-1
  7. Chen, S.Y., Hu, S.S., Dong, Q., Cai, J.X., Zhang, W.P., Sun, J.Y., Wang, T.T., Xie, J., He, H.R., Xing, J.F., et al. (2013). Establishment of paclitaxel-resistant breast cancer cell line and nude mice models, and underlying multidrug resistance mechanisms in vitro and in vivo. Asian Pac. J. Cancer Prev. 14, 6135-6140. https://doi.org/10.7314/APJCP.2013.14.10.6135
  8. Cruet-Hennequart, S., Villalan, S., Kaczmarczyk, A., O'Meara, E., Sokol, A.M., and Carty, M.P. (2009). Characterization of the effects of cisplatin and carboplatin on cell cycle progression and DNA damage response activation in DNA polymerase eta-deficient human cells. Cell Cycle 8, 3039-3050.
  9. Dallas, N.A., Xia, L., Fan, F., Gray, M.J., Gaur, P., van Buren, G., 2nd, Samuel, S., Kim, M.P., Lim, S.J., and Ellis, L.M. (2009). Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res. 69, 1951-1957. https://doi.org/10.1158/0008-5472.CAN-08-2023
  10. Glubrecht, D.D., Kim, J.H., Russell, L., Bamforth, J.S., and Godbout, R. (2009). Differential CRX and OTX2 expression in human retina and retinoblastoma. J. Neurochem. 111, 250-263. https://doi.org/10.1111/j.1471-4159.2009.06322.x
  11. Hou, Y., Zhu, Q., Li, Z., Peng, Y., Yu, X., Yuan, B., Liu, Y., Liu, Y., Yin, L., Peng, Y., et al. (2017). The FOXM1-ABCC5 axis contributes to paclitaxel resistance in nasopharyngeal carcinoma cells. Cell Death Dis. 8, e2659. https://doi.org/10.1038/cddis.2017.53
  12. Ishikawa, Y., Nagai, J., Okada, Y., Sato, K., Yumoto, R., and Takano, M. (2010). Function and expression of ATP-binding cassette transporters in cultured human Y79 retinoblastoma cells. Biol. Pharm. Bull. 33, 504-511. https://doi.org/10.1248/bpb.33.504
  13. Jensen, N.F., Stenvang, J., Beck, M.K., Hanakova, B., Belling, K.C., Do, K.N., Viuff, B., Nygard, S.B., Gupta, R., Rasmussen, M.H., et al. (2015). Establishment and characterization of models of chemotherapy resistance in colorectal cancer: towards a predictive signature of chemoresistance. Mol. Oncol. 9, 1169-1185. https://doi.org/10.1016/j.molonc.2015.02.008
  14. Jo, D.H., Lee, K., Kim, J.H., Jun, H.O., Kim, Y., Cho, Y.L., Yu, Y.S., Min, J.K., and Kim, J.H. (2017). L1 increases adhesion-mediated proliferation and chemoresistance of retinoblastoma. Oncotarget 8, 15441-15452. https://doi.org/10.18632/oncotarget.14487
  15. Jo, D.H., Son, D., Na, Y., Jang, M., Choi, J.H., Kim, J.H., Yu, Y.S., Seok, S.H., and Kim, J.H. (2013). Orthotopic transplantation of retinoblastoma cells into vitreous cavity of zebrafish for screening of anticancer drugs. Mol. Cancer 12, 71. https://doi.org/10.1186/1476-4598-12-71
  16. Kaliki, S. and Shields, C.L. (2015). Retinoblastoma: achieving new standards with methods of chemotherapy. Indian J. Ophthalmol. 63, 103-109. https://doi.org/10.4103/0301-4738.154369
  17. Kaplan, H.J., Chiang, C.W., Chen, J., and Song, S.K. (2010). Vitreous volume of the mouse measured by quantitative high-resolution MRI. Invest. Ophthalmol. Vis. Sci. 51, 4414.
  18. Katano, K., Safaei, R., Samimi, G., Holzer, A., Rochdi, M., and Howell, S.B. (2003). The copper export pump ATP7B modulates the cellular pharmacology of carboplatin in ovarian carcinoma cells. Mol. Pharmacol. 64, 466-473. https://doi.org/10.1124/mol.64.2.466
  19. Katsetos, C.D., Herman, M.M., Frankfurter, A., Uffer, S., Perentes, E., and Rubinstein, L.J. (1991). Neuron-associated class III beta-tubulin isotype, microtubule-associated protein 2, and synaptophysin in human retinoblastomas in situ. Further immunohistochemical observations on the Flexner-Wintersteiner rosettes. Lab. Invest. 64, 45-54.
  20. Khokhlova, O.N., Tukhovskaya, E.A., Kravchenko, I.N., Sadovnikova, E.S., Pakhomova, I.A., Kalabina, E.A., Lobanov, A.V., Shaykhutdinova, E.R., Ismailova, A.M., and Murashev, A.N. (2017). Using tiletamine-zolazepamxylazine anesthesia compared to CO2-inhalation for terminal clinical chemistry, hematology, and coagulation analysis in mice. J. Pharmacol. Toxicol. Methods 84, 11-19. https://doi.org/10.1016/j.vascn.2016.10.005
  21. Kim, J.H., Kim, J.H., Yu, Y.S., Kim, D.H., Kim, C.J., and Kim, K.W. (2007). Establishment and characterization of a novel, spontaneously immortalized retinoblastoma cell line with adherent growth. Int. J. Oncol. 31, 585-592.
  22. Laurie, N., Mohan, A., McEvoy, J., Reed, D., Zhang, J., Schweers, B., Ajioka, I., Valentine, V., Johnson, D., Ellison, D., et al. (2009). Changes in retinoblastoma cell adhesion associated with optic nerve invasion. Mol. Cell. Biol. 29, 6268-6282. https://doi.org/10.1128/MCB.00374-09
  23. Laurie, N.A., Gray, J.K., Zhang, J., Leggas, M., Relling, M., Egorin, M., Stewart, C., and Dyer, M.A. (2005). Topotecan combination chemotherapy in two new rodent models of retinoblastoma. Clin. Cancer Res. 11, 7569-7578. https://doi.org/10.1158/1078-0432.CCR-05-0849
  24. Longley, D.B. and Johnston, P.G. (2005). Molecular mechanisms of drug resistance. J. Pathol. 205, 275-292. https://doi.org/10.1002/path.1706
  25. Safaei, R. and Howell, S.B. (2005). Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs. Crit. Rev. Oncol. Hematol. 53, 13-23. https://doi.org/10.1016/j.critrevonc.2004.09.007
  26. Samimi, G., Safaei, R., Katano, K., Holzer, A.K., Rochdi, M., Tomioka, M., Goodman, M., and Howell, S.B. (2004). Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clin. Cancer Res. 10, 4661-4669. https://doi.org/10.1158/1078-0432.CCR-04-0137
  27. Stephan, H., Boeloeni, R., Eggert, A., Bornfeld, N., and Schueler, A. (2008). Photodynamic therapy in retinoblastoma: effects of verteporfin on retinoblastoma cell lines. Invest. Ophthalmol. Vis. Sci. 49, 3158-3163. https://doi.org/10.1167/iovs.07-1016
  28. Torbidoni, A.V., Laurent, V.E., Sampor, C., Ottaviani, D., Vazquez, V., Gabri, M.R., Rossi, J., de Davila, M.T., Alonso, C., Alonso, D.F., et al. (2015). Association of cone-rod homeobox transcription factor messenger RNA with pediatric metastatic retinoblastoma. JAMA Ophthalmol. 133, 805-812. https://doi.org/10.1001/jamaophthalmol.2015.0900
  29. Wang, C., Guo, L.B., Ma, J.Y., Li, Y.M., and Liu, H.M. (2013). Establishment and characterization of a paclitaxelresistant human esophageal carcinoma cell line. Int. J. Oncol. 43, 1607-1617. https://doi.org/10.3892/ijo.2013.2083
  30. Wang, Y.F., Kunda, P.E., Lin, J.W., Wang, H., Chen, X.M., Liu, Q.L., and Liu, T. (2013). Cytokine-induced killer cells co-cultured with complete tumor antigen-loaded dendritic cells, have enhanced selective cytotoxicity on carboplatin-resistant retinoblastoma cells. Oncol. Rep. 29, 1841-1850. https://doi.org/10.3892/or.2013.2315
  31. Wen, J., Zheng, B., Hu, Y., Zhang, X., Yang, H., Luo, K.J., Zhang, X., Li, Y.F., and Fu, J.H. (2009). Establishment and biological analysis of the EC109/ CDDP multidrug-resistant esophageal squamous cell carcinoma cell line. Oncol. Rep. 22, 65-71.
  32. Wu, C.P. and Ambudkar, S.V. (2014). The pharmacological impact of ATPbinding cassette drug transporters on vemurafenib-based therapy. Acta Pharm. Sin. B 4, 105-111. https://doi.org/10.1016/j.apsb.2013.12.001
  33. Yano, S., Miwa, S., Mii, S., Hiroshima, Y., Uehara, F., Yamamoto, M., Kishimoto, H., Tazawa, H., Bouvet, M., Fujiwara, T., et al. (2014). Invading cancer cells are predominantly in G0/G1 resulting in chemoresistance demonstrated by real-time FUCCI imaging. Cell Cycle 13, 953-960. https://doi.org/10.4161/cc.27818
  34. Zhu, X., Xue, L., Yao, Y., Wang, K., Tan, C., Zhuang, M., Zhou, F., and Zhu, L. (2018). The FoxM1-ABCC4 axis mediates carboplatin resistance in human retinoblastoma Y-79 cells. Acta Biochim. Biophys. Sin. (Shanghai) 50, 914-920. https://doi.org/10.1093/abbs/gmy080