DOI QR코드

DOI QR Code

증기 메탄 개질 반응의 Ru 촉매 Kinetic Parameter 예측

Kinetic Parameter Estimation of Ru Catalyst for Steam Methane Reforming

  • 주종효 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 김명준 (연세대학교 산학협력단) ;
  • 조형태 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 이재원 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 김정환 (한국생산기술연구원 친환경재료공정연구그룹)
  • JOO, CHONGHYO (Green Materials and Processes R&D Group, Korea Institute of International Technology) ;
  • KIM, MYUNGJUN (Office of Research Affairs/University Industry Foundation, Yonsei University) ;
  • CHO, HYUNGTAE (Green Materials and Processes R&D Group, Korea Institute of International Technology) ;
  • LEE, JAEWON (Green Materials and Processes R&D Group, Korea Institute of International Technology) ;
  • KIM, JUNGHWAN (Green Materials and Processes R&D Group, Korea Institute of International Technology)
  • 투고 : 2022.08.09
  • 심사 : 2022.10.13
  • 발행 : 2022.10.30

초록

This study proposes kinetic parameters of Ru catalyst for steam methane reforming (SMR). First, extensive experiments are performed under different SMR conditions to evaluate performance of the catalyst in SMR. Second, a kinetic model is designed and developed for parameter estimation and validation using gPROMS. Finally, estimated parameters are fitted to the kinetic model and then, the model results are compared with the experimental data. The model results are in a good agreement with the experimental data.

키워드

과제정보

이 연구는 대한민국 정부 산업통상자원부 및 방위사업청 재원으로 민군협력진흥원에서 수행하는 민군기술협력사업의 연구비(UM19313RD3) 지원으로 수행되었다.

참고문헌

  1. M. Voldsund, K. Jordal, and R. Anantharaman, "Hydrogen production with CO2 capture", Int. J. Hydrogen Energy, Vol. 41, No. 9, 2016, pp. 49694992, doi: https://doi.org/10.1016/j.ijhydene.2016.01.009.
  2. Y. S. Kim, K. H. Lee, D. K. Lee, Y. D. Lee, and K. Y. Ahn, "Midtemperature operation characteristics of commercial reforming catalysts: comparison of rubased and nibased catalyst", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 3, 2022, pp. 149155, doi: https://doi.org/10.7316/KHNES.2021.32.3.149.
  3. B. J. Kim, W. L. Yoon, and D. J. Seo "Analysis of the economy of scale for domestic steam methane reforming hydrogen refueling stations utilizing the scale factor", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 3, 2019, pp. 251 259, doi: https://doi.org/10.7316/KHNES.2019.30.3.251.
  4. S. Hong, J. Lee, H. Cho, M. Kim, I. Moon, and J. Kim, "Multiobjective optimization of CO2 emission and ther mal efficiency for onsite steam methane reforming hydro gen production process using machine learning", J. Cleaner Production, Vol. 359, 2022, pp. 132133, doi: https://doi.org/10.1016/j.jclepro.2022.132133.
  5. J. Xu and G. F. Froment, "Methane steam reforming, methanation and watergas shift: I. Intrinsic kinetics", AIChE J., Vol. 35, No. 1, 1989, pp. 8896, doi: https://doi.org/10.1002/aic.690350109.
  6. D. L. Hoang, S. H. Chan, and O. L. Ding, "Kinetic and mod elling study of methane steam reforming over sulfide nickel catalyst on a gamma alumina support", Chem. Eng. J., Vol. 122, No. 13, 2005, pp. 111, doi: https://doi.org/10.1016/j.cej.2005.06.004.
  7. E. L. G. Oliveria, C. A. Grande, and A. E. Rodrigues, "Steam methane reforming in a Ni/Al2O3 catalyst: kinetics and dif fusional limitations in extrudates", Can. J. Chem. Eng., Vol. 87, No. 6, 2009, pp. 945956, doi: https://doi.org/10.1002/CJCE.20223.
  8. J. W. Lee, H. T. Cho, M. J. Kim, S. Hall, and I. Moon, "Doubletube reactor design and process optimization for onsite steam methane reforming processes", Ind. Eng. Chem. Res., Vol. 59, No. 40, 2020, pp. 1802818038, doi: https://dx.doi.org/10.1021/acs.iecr.0c02875.
  9. S. Ergun, "Fluid flow through packed columns", Chemical Engineering Progress, Vol. 48, 1952, pp. 8994.
  10. V. Gnielinski, "Calculation of heatand mass transfer co efficient in the flow of gases through static packed beds", Erfahrenstechnik (Mainz), Vol. 16, No. 1, 1982, pp. 3639.
  11. S. Lee, J. Bae, S. Lim, and J. Park, "Improved configuration of supported nickel catalysts in a steam reformer for effec tive hydrogen production from methane", J. Power Sources, Vol. 180, No. 1, 2008, pp. 506515, doi: https://doi.org/10.1016/j.jpowsour.2008.01.081.
  12. Process Systems Enterprise Ltd., "gPROMS advanced user guide", Process Systems Enterprise Ltd., London, 2011. Retrieved from http://www.psenterprise.com.
  13. J. H. Ryu, K. Y. Lee, H. La, H. J. Kim, J. I. Yang, and H. Jung, "Ni catalyst washcoated on metal monolith with enhanced heattransfer capability for steam reforming", J. Power Sources, Vol. 171, No. 2, 2007, pp. 499505, doi: https://doi.org/10.1016/J.JPOWSOUR.2007.05.107.
  14. F. MoralesCano, L. F. Lundegaard, R. R. Tiruvalam, H. Falsig, and M. S. SkjothRasmussen, "Improving the sinter ing resistance of Ni/Al2O3 steamreforming catalysts by promotion with noble metals", Appl. Catal. A Gen., Vol. 498, 2015, pp. 117125, doi: https://doi.org/10.1016/j.apcata.2015.03.016.