DOI QR코드

DOI QR Code

Immune Responses to Plant-Derived Recombinant Colorectal Cancer Glycoprotein EpCAM-FcK Fusion Protein in Mice

  • Lim, Chae-Yeon (Department of Medicine, College of Medicine, Chung-Ang University) ;
  • Kim, Deuk-Su (Department of Medicine, College of Medicine, Chung-Ang University) ;
  • Kang, Yangjoo (Department of Medicine, College of Medicine, Chung-Ang University) ;
  • Lee, Ye-Rin (Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kim, Kibum (Department of Medicine, College of Medicine, Chung-Ang University) ;
  • Kim, Do Sun (Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kim, Moon-Soo (Department of Chemistry, Ogden College of Science and Engineering, Western Kentucky University) ;
  • Ko, Kisung (Department of Medicine, College of Medicine, Chung-Ang University)
  • Received : 2022.07.26
  • Accepted : 2022.08.27
  • Published : 2022.11.01

Abstract

Epidermal cell adhesion molecule (EpCAM) is a tumor-associated antigen (TAA), which has been considered as a cancer vaccine candidate. The EpCAM protein fused to the fragment crystallizable region of immunoglobulin G (IgG) tagged with KDEL endoplasmic reticulum (ER) retention signal (EpCAM-FcK) has been successfully expressed in transgenic tobacco (Nicotiana tabacum cv. Xanthi) and purified from the plant leaf. In this study, we investigated the ability of the plant-derived EpCAM-FcK (EpCAM-FcKP) to elicit an immune response in vivo. The animal group injected with the EpCAM-FcKP showed a higher differentiated germinal center (GC) B cell population (~9%) compared with the animal group injected with the recombinant rhEpCAM-Fc chimera (EpCAM-FcM). The animal group injected with EpCAM-FcKP (~42%) had more differentiated T follicular helper cells (Tfh) than the animal group injected with EpCAM-FcM (~7%). This study demonstrated that the plant-derived EpCAM-FcK fusion antigenic protein induced a humoral immune response in mice.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) [2021R1F1A1063869] and Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ0162662022) Rural Development Administration, Republic of Korea. Finally, we thank Prof. Yoon Kyung Do for assistance with the Cytokine assays for comments that greatly improved the manuscript.

References

  1. Barnett, L. G., Simkins, H. M., Barnett, B. E., Korn, L. L., Johnson, A. L., Wherry, E. J., Wu, G. F. and Laufer, T. M. (2014) B cell antigen presentation in the initiation of follicular helper T cell and germinal center differentiation. J. Immunol. 192, 3607-3617. https://doi.org/10.4049/jimmunol.1301284
  2. Choi, S.-C. and Morel, L. (2020) Immune metabolism regulation of the germinal center response. Exp. Mol. Med. 52, 348-355. https://doi.org/10.1038/s12276-020-0392-2
  3. Crotty, S. (2011) Follicular helper CD4 T cells (Tfh). Annu. Rev. Immunol. 29, 621-663. https://doi.org/10.1146/annurev-immunol-031210-101400
  4. Guthmiller, J. J., Graham, A. C., Zander, R. A., Pope, R. L. and Butler, N. S. (2017) Cutting edge: IL-10 is essential for the generation of germinal center B cell responses and anti-plasmodium humoral immunity. J. Immunol. 198, 617-622.
  5. Hamel, K. M., Liarski, V. M. and Clark, M. R. (2012) Germinal center B-cells. Autoimmunity 45, 333-347. https://doi.org/10.3109/08916934.2012.665524
  6. Hao, Z., Duncan, G. S., Seagal, J., Su, Y.-W., Hong, C., Haight, J., Chen, N.-J., Elia, A., Wakeham, A. and Li, W. Y. (2008) Fas receptor expression in germinal-center B cells is essential for T and B lymphocyte homeostasis. Immunity 29, 615-627. https://doi.org/10.1016/j.immuni.2008.07.016
  7. Haynes, N. M., Allen, C. D., Lesley, R., Ansel, K. M., Killeen, N. and Cyster, J. G. (2007) Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene1high germinal center-associated subpopulation. J. Immunol. 179, 5099-5108. https://doi.org/10.4049/jimmunol.179.8.5099
  8. Jang, E. and Youn, J. (2013) The niche of follicular helper T cells in systemic autoimmune diseases. Hanyang Med. Rev. 33, 1-9. https://doi.org/10.7599/hmr.2013.33.1.1
  9. Kerfoot, S. M., Yaari, G., Patel, J. R., Johnson, K. L., Gonzalez, D. G., Kleinstein, S. H. and Haberman, A. M. (2011) Germinal center B cell and T follicular helper cell development initiates in the interfollicular zone. Immunity 34, 947-960. https://doi.org/10.1016/j.immuni.2011.03.024
  10. Khurana, P., Boeckx, L., Lauriks, W., Leclaire, P., Dazel, O. and Allard, J. F. (2009) A description of transversely isotropic sound absorbing porous materials by transfer matrices. J. Acoust. Soc. Am. 125, 915-921. https://doi.org/10.1121/1.3035840
  11. Kim, D. S., Kang ,Y. J., Lee, K. J., Qiao, L., Ko, K., Kim, D. H., Myeung, S. C. and Ko, K. (2020) A plant-derived antigen-antibody complex induces anti-cancer immune responses by forming a large quaternary structure. Int. J. Mol. Sci. 21, 5603. https://doi.org/10.3390/ijms21165603
  12. King, C. (2011) A fine romance: T follicular helper cells and B cells. Immunity 34, 827-829. https://doi.org/10.1016/j.immuni.2011.06.007
  13. Laidlaw, B. J. and Cyster, J. G. (2021) Transcriptional regulation of memory B cell differentiation. Nat. Rev. Immunol. 21, 209-220. https://doi.org/10.1038/s41577-020-00446-2
  14. Laidlaw, B. J., Lu, Y., Amezquita, R. A., Weinstein, J. S., Vander Heiden, J. A., Gupta, N.,T., Kleinstein, S. H., Kaech, S. M. and Craft, J. (2017) Interleukin-10 from CD4+ follicular regulatory T cells promotes the germinal center response. Sci. Immunol. 2, eaan4767. https://doi.org/10.1126/sciimmunol.aan4767
  15. Lee, J. H. and Ko, K. (2017) Production of recombinant anti-cancer vaccines in plants. Biomol. Ther. (Seoul) 25, 345-353. https://doi.org/10.4062/biomolther.2016.126
  16. Lim, C.-Y., Lee, K. J., Oh, D.-B. and Ko, K. (2015) Effect of the developmental stage and tissue position on the expression and glycosylation of recombinant glycoprotein GA733-FcK in transgenic plants. Front. Plant Sci. 5, 778.
  17. Lu, Z., Lee, K.-J., Shao, Y., Lee, J.-H., So, Y., Choo, Y.-K., Oh, D.-B., Hwang, K.-A., Oh, S. H., Han, Y. S. and Ko, K. (2012) Expression of GA733-Fc fusion protein as a vaccine candidate for colorectal cancer in transgenic plants. J. Biomed. Biotechnol. 2012, 364240.
  18. Ma, C. S., Deenick, E. K., Batten, M. and Tangye, S. G. (2012) The origins, function, and regulation of T follicular helper cells. J. Exp. Med. 209, 1241-1253. https://doi.org/10.1084/jem.20120994
  19. Mesin, L., Ersching, J. and Victora, G. D. (2016) Germinal center B cell dynamics. Immunity 45, 471-482. https://doi.org/10.1016/j.immuni.2016.09.001
  20. Mintz, M. A. and Cyster, J. G. (2020) T follicular helper cells in germinal center B cell selection and lymphomagenesis. Immunol. Rev. 296, 48-61. https://doi.org/10.1111/imr.12860
  21. Nahshol, O., Bronner, V., Notcovich, A., Rubrecht, L., Laune, D. and Bravman, T. (2008) Parallel kinetic analysis and affinity determination of hundreds of monoclonal antibodies using the ProteOn XPR36. Anal. Biochem. 383, 52-60. https://doi.org/10.1016/j.ab.2008.08.017
  22. Naito, Y., Takematsu, H., Koyama, S., Miyake, S., Yamamoto, H., Fujinawa, R., Sugai, M., Okuno, Y., Tsujimoto, G., Yamaji, T., Hashimoto, Y., Itohara, S., Kawasaki, T., Suzuki, A. and Kozutsumi, Y. (2007) Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation. Mol. Cell. Biol. 27, 3008-3022. https://doi.org/10.1128/MCB.02047-06
  23. Nicholson, L. B. (2016) The immune system. Essays Biochem. 60, 275-301. https://doi.org/10.1042/EBC20160017
  24. Nojima, T., Haniuda, K., Moutai, T., Matsudaira, M., Mizokawa, S., Shiratori, I., Azuma, T. and Kitamura, D. (2011) In-vitro derived germinal centre B cells differentially generate memory B or plasma cells in vivo. Nat. Commun. 2, 465. https://doi.org/10.1038/ncomms1475
  25. Palm, A.-K. E. and Henry, C. (2019) Remembrance of things past: long-term B cell memory after infection and vaccination. Front. Immunol. 10, 1787. https://doi.org/10.3389/fimmu.2019.01787
  26. Park, H.-J., Kim, D.-H. and Choi, J.-M. (2013) Germinal center formation controlled by balancing between follicular helper T cells and follicular regulatory T cells. Hanyang Med. Rev. 33, 10-16. https://doi.org/10.7599/hmr.2013.33.1.10
  27. Park, S.-R., Lim, C.-Y., Kim, D.-S. and Ko, K. (2015a) Optimization of ammonium sulfate concentration for purification of colorectal cancer vaccine candidate recombinant protein GA733-FcK isolated from plants. Front. Plant Sci. 6, 1040.
  28. Park, S. R., Lee, J.-H., Kim, K., Kim, T. M., Lee, S. H., Choo, Y.-K., Kim, K. S. and Ko, K. (2020) Expression and in vitro function of antibreast cancer llama-based single domain antibody VHH expressed in tobacco plants. Int. J. Mol. Sci. 21, 1354. https://doi.org/10.3390/ijms21041354
  29. Park, S. R., Shin, Y. K., Lee, K. J., Lee, J. H., Hedin, D., Mulvania, T., Lee, S. H. and Ko, K. (2014) Expression, glycosylation and function of recombinant anti-colorectal cancer mAb CO17-1A in SfSWT4 insect cells. Entomol. Res. 44, 39-46. https://doi.org/10.1111/1748-5967.12048
  30. Perreau, M., Savoye, A.-L., De Crignis, E., Corpataux, J.-M., Cubas, R., Haddad, E. K., De Leval, L., Graziosi, C. and Pantaleo, G. (2013) Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J. Exp. Med. 210, 143-156. https://doi.org/10.1084/jem.20121932
  31. Rich, R. R. and Chaplin, D. D. (2019) The human immune response. In Clinical Immunology, pp. 3-17.e1. Elsevier.
  32. Song, I., Kang, Y. J., Choi, S. L., Han, D., Kim, D. S., Lee, H. K., Lee, J. C., Park, J., Kim, D. S. and Ko, K. (2019) Purification of plant-derived anti-virus mAb through optimized pH conditions for coupling between protein A and epoxy-activated beads. PeerJ 7, e6828. https://doi.org/10.7717/peerj.6828
  33. Song, I., Lee, Y. K., Kim, J. W., Lee, S.-W., Park, S. R., Lee, H. K, Oh, S., Ko, K., Kim, M. K., Park, S. J., Kim, D. H., Kim, M.-S., Kim, D. S. and Ko, K. (2021) Effect of an endoplasmic reticulum retention signal tagged to human anti-rabies mAb SO57 on its expression in Arabidopsis and plant growth. Mol. Cells 44, 770-779. https://doi.org/10.14348/molcells.2021.2002
  34. Stebegg, M., Kumar, S. D., Silva-Cayetano, A., Fonseca, V. R., Linterman, M. A. and Graca, L. (2018) Regulation of the germinal center response. Front. Immunol. 9, 2469. https://doi.org/10.3389/fimmu.2018.02469
  35. Tangye, S. G., Ma, C. S., Brink, R. and Deenick, E. K. (2013) The good, the bad and the ugly-TFH cells in human health and disease. Nat. Rev. Immunol. 13, 412-426. https://doi.org/10.1038/nri3447
  36. Verch, T., Hooper, D. C., Kiyatkin, A., Steplewski, Z. and Koprowski, H. (2004) Immunization with a plant-produced colorectal cancer antigen. Cancer Immunol. Immunother. 53, 92-99. https://doi.org/10.1007/s00262-003-0428-1
  37. Yardeni, T., Eckhaus, M., Morris, H. D., Huizing, M. and HoogstratenMiller, S. (2011) Retro-orbital injections in mice. Lab. Anim. 40, 155-160. https://doi.org/10.1038/laban0511-155