DOI QR코드

DOI QR Code

Modulation of Reactive Oxygen Species to Overcome 5-Fluorouracil Resistance

  • Received : 2022.01.28
  • Accepted : 2022.03.30
  • Published : 2022.11.01

Abstract

5-Fluorouracil (5-FU) remains to be an important chemotherapeutic drug for treating several cancers when targeted therapy is unavailable. Chemoresistance limits the clinical utility of 5-FU, and new strategies are required to overcome the resistance. Reactive oxygen species (ROS) and antioxidants are balanced differently in both normal and cancer cells. Modulating ROS can be one method of overcoming 5-FU resistance. This review summarizes selected compounds and endogenous cellular targets modulating ROS generation to overcome 5-FU resistance.

Keywords

Acknowledgement

This work was supported by research grants from Daegu Catholic University in 2020.

References

  1. Afrin, S., Giampieri, F., Forbes-Hernandez, T. Y., Gasparrini, M., Amici, A., Cianciosi, D., Quiles, J. L. and Battino, M. (2018a) Manuka honey synergistically enhances the chemopreventive effect of 5-fluorouracil on human colon cancer cells by inducing oxidative stress and apoptosis, altering metabolic phenotypes and suppressing metastasis ability. Free Radic. Biol. Med. 126, 41-54. https://doi.org/10.1016/j.freeradbiomed.2018.07.014
  2. Afrin, S., Giampieri, F., Gasparrini, M., Forbes-Hernandez, T. Y., Cianciosi, D., Reboredo-Rodriguez, P., Amici, A., Quiles, J. L. and Battino, M. (2018b) The inhibitory effect of Manuka honey on human colon cancer HCT-116 and LoVo cell growth. Part 1: the suppression of cell proliferation, promotion of apoptosis and arrest of the cell cycle. Food Funct. 9, 2145-2157. https://doi.org/10.1039/C8FO00164B
  3. Ahmad, B., Khan, S., Nabi, G., Gamallat, Y., Su, P., Jamalat, Y., Duan, P. and Yao, L. (2019) Natural gypenosides: targeting cancer through different molecular pathways. Cancer Manag. Res. 11, 2287-2297. https://doi.org/10.2147/CMAR.S185232
  4. Ak, T. and Gulcin, I. (2008) Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 174, 27-37. https://doi.org/10.1016/j.cbi.2008.05.003
  5. Akhdar, H., Loyer, P., Rauch, C., Corlu, A., Guillouzo, A. and Morel, F. (2009) Involvement of Nrf2 activation in resistance to 5-fluorouracil in human colon cancer HT-29 cells. Eur. J. Cancer 45, 2219-2227. https://doi.org/10.1016/j.ejca.2009.05.017
  6. Alnuqaydan, A. M., Rah, B., Almutary, A. G. and Chauhan, S. S. (2020) Synergistic antitumor effect of 5-fluorouracil and withaferin-A induces endoplasmic reticulum stress-mediated autophagy and apoptosis in colorectal cancer cells. Am. J. Cancer Res. 10, 799-815.
  7. Bai, X., Chen, Y., Hou, X., Huang, M. and Jin, J. (2016) Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab. Rev. 48, 541-567. https://doi.org/10.1080/03602532.2016.1197239
  8. Bailly, C. (2020) Anticancer activities and mechanism of action of the labdane diterpene coronarin D. Pathol. Res. Pract. 216, 152946. https://doi.org/10.1016/j.prp.2020.152946
  9. Blondy, S., David, V., Verdier, M., Mathonnet, M., Perraud, A. and Christou, N. (2020) 5-Fluorouracil resistance mechanisms in colorectal cancer: from classical pathways to promising processes. Cancer Sci. 111, 3142-3154. https://doi.org/10.1111/cas.14532
  10. Brewer, G. J., Dick, R. D., Yuzbasiyan-Gurkin, V., Tankanow, R., Young, A. B. and Kluin, K. J. (1991) Initial therapy of patients with Wilson's disease with tetrathiomolybdate. Arch. Neurol. 48, 42-47. https://doi.org/10.1001/archneur.1991.00530130050019
  11. Cai, Y. Z., Mei, S., Jie, X., Luo, Q. and Corke, H. (2006) Structureradical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 78, 2872-2888. https://doi.org/10.1016/j.lfs.2005.11.004
  12. Cao, W., Li, X., Zheng, S., Zheng, W., Wong, Y. S. and Chen, T. (2014) Selenocysteine derivative overcomes TRAIL resistance in melanoma cells: evidence for ROS-dependent synergism and signaling crosstalk. Oncotarget 5, 7431-7445. https://doi.org/10.18632/oncotarget.2008
  13. Carvalho, M., Silva, B. M., Silva, R., Valentao, P., Andrade, P. B. and Bastos, M. L. (2010) First report on Cydonia oblonga Miller anticancer potential: differential antiproliferative effect against human kidney and colon cancer cells. J. Agric. Food Chem. 58, 3366-3370. https://doi.org/10.1021/jf903836k
  14. Chan, J. Y., Yuen, A. C., Chan, R. Y. and Chan, S. W. (2013) A review of the cardiovascular benefits and antioxidant properties of allicin. Phytother. Res. 27, 637-646. https://doi.org/10.1002/ptr.4796
  15. Chen, J. C., Hsieh, M. C., Lin, S. H., Lin, C. C., Hsi, Y. T., Lo, Y. S., Chuang, Y. C., Hsieh, M. J. and Chen, M. K. (2017a) Coronarin D induces reactive oxygen species-mediated cell death in human nasopharyngeal cancer cells through inhibition of p38 MAPK and activation of JNK. Oncotarget 8, 108006-108019. https://doi.org/10.18632/oncotarget.22444
  16. Chen, T. and Wong, Y. S. (2009) Selenocystine induces reactive oxygen species-mediated apoptosis in human cancer cells. Biomed. Pharmacother. 63, 105-113. https://doi.org/10.1016/j.biopha.2008.03.009
  17. Chen, X., Chen, X., Zhang, X., Wang, L., Cao, P., Rajamanickam, V., Wu, C., Zhou, H., Cai, Y., Liang, G. and Wang, Y. (2019) Curcuminoid B63 induces ROS-mediated paraptosis-like cell death by targeting TrxR1 in gastric cells. Redox. Biol. 21, 101061. https://doi.org/10.1016/j.redox.2018.11.019
  18. Chen, X., Yang, L., Oppenheim, J. J. and Howard, M. Z. (2002) Cellular pharmacology studies of shikonin derivatives. Phytother. Res. 16, 199-209. https://doi.org/10.1002/ptr.1100
  19. Chen, X. X., Lam, K. H., Chen, Q. X., Leung, G. P., Tang, S. C. W., Sze, S. C., Xiao, J. B., Feng, F., Wang, Y., Zhang, K. Y. and Zhang, Z. J. (2017b) Ficus virens proanthocyanidins induced apoptosis in breast cancer cells concomitantly ameliorated 5-fluorouracil induced intestinal mucositis in rats. Food Chem. Toxicol. 110, 49-61. https://doi.org/10.1016/j.fct.2017.10.017
  20. Chen, X. X., Leung, G. P., Zhang, Z. J., Xiao, J. B., Lao, L. X., Feng, F., Mak, J. C., Wang, Y., Sze, S. C. and Zhang, K. Y. (2017c) Proanthocyanidins from Uncaria rhynchophylla induced apoptosis in MDA-MB-231 breast cancer cells while enhancing cytotoxic effects of 5-fluorouracil. Food Chem. Toxicol. 107, 248-260. https://doi.org/10.1016/j.fct.2017.07.012
  21. Choi, S. M., Cho, Y. S., Park, G., Lee, S. K. and Chun, K. S. (2021) Celecoxib induces apoptosis through Akt inhibition in 5-fluorouracilresistant gastric cancer cells. Toxicol. Res. 37, 25-33. https://doi.org/10.1007/s43188-020-00044-3
  22. Chong, D., Ma, L., Liu, F., Zhang, Z., Zhao, S., Huo, Q., Zhang, P., Zheng, H. and Liu, H. (2017) Synergistic antitumor effect of 3-bromopyruvate and 5-fluorouracil against human colorectal cancer through cell cycle arrest and induction of apoptosis. Anticancer Drugs 28, 831-840. https://doi.org/10.1097/CAD.0000000000000517
  23. Das, R., Bhattacharya, K., Sarkar, S., Samanta, S. K., Pal, B. C. and Mandal, C. (2014) Mahanine synergistically enhances cytotoxicity of 5-fluorouracil through ROS-mediated activation of PTEN and p53/p73 in colon carcinoma. Apoptosis 19, 149-164. https://doi.org/10.1007/s10495-013-0907-6
  24. Dhanasekaran, D. N. and Reddy, E. P. (2008) JNK signaling in apoptosis. Oncogene 27, 6245-6251. https://doi.org/10.1038/onc.2008.301
  25. Dou, C., Fang, C., Zhao, Y., Fu, X., Zhang, Y., Zhu, D., Wu, H., Liu, H., Zhang, J., Xu, W., Liu, Z., Wang, H., Li, D. and Wang, X. (2017) BC-02 eradicates liver cancer stem cells by upregulating the ROSdependent DNA damage. Int. J. Oncol. 51, 1775-1784. https://doi.org/10.3892/ijo.2017.4159
  26. Fan, C., Chen, J., Wang, Y., Wong, Y. S., Zhang, Y., Zheng, W., Cao, W. and Chen, T. (2013) Selenocystine potentiates cancer cell apoptosis induced by 5-fluorouracil by triggering reactive oxygen species-mediated DNA damage and inactivation of the ERK pathway. Free Radic. Biol. Med. 65, 305-316. https://doi.org/10.1016/j.freeradbiomed.2013.07.002
  27. Fatfat, M., Merhi, R. A., Rahal, O., Stoyanovsky, D. A., Zaki, A., Haidar, H., Kagan, V. E., Gali-Muhtasib, H. and Machaca, K. (2014) Copper chelation selectively kills colon cancer cells through redox cycling and generation of reactive oxygen species. BMC Cancer 14, 527. https://doi.org/10.1186/1471-2407-14-527
  28. Frei, E., 3rd, Elias, A., Wheeler, C., Richardson, P. and Hryniuk, W. (1998) The relationship between high-dose treatment and combination chemotherapy: the concept of summation dose intensity. Clin. Cancer Res. 4, 2027-2037.
  29. Glick, D., Barth, S. and Macleod, K. F. (2010) Autophagy: cellular and molecular mechanisms. J. Pathol. 221, 3-12. https://doi.org/10.1002/path.2697
  30. Gorrini, C., Harris, I. S. and Mak, T. W. (2013) Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931-947. https://doi.org/10.1038/nrd4002
  31. Gupte, A. and Mumper, R. J. (2009) Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat. Rev. 35, 32-46. https://doi.org/10.1016/j.ctrv.2008.07.004
  32. Haraguchi, N., Ishii, H., Mimori, K., Tanaka, F., Ohkuma, M., Kim, H. M., Akita, H., Takiuchi, D., Hatano, H., Nagano, H., Barnard, G. F., Doki, Y. and Mori, M. (2010) CD13 is a therapeutic target in human liver cancer stem cells. J. Clin. Invest. 120, 3326-3339. https://doi.org/10.1172/JCI42550
  33. Hashida, H., Takabayashi, A., Kanai, M., Adachi, M., Kondo, K., Kohno, N., Yamaoka, Y. and Miyake, M. (2002) Aminopeptidase N is involved in cell motility and angiogenesis: its clinical significance in human colon cancer. Gastroenterology 122, 376-386. https://doi.org/10.1053/gast.2002.31095
  34. He, C., Rong, R., Liu, J., Wan, J., Zhou, K. and Kang, J. X. (2012) Effects of Coptis extract combined with chemotherapeutic agents on ROS production, multidrug resistance, and cell growth in A549 human lung cancer cells. Chin. Med. 7, 11. https://doi.org/10.1186/1749-8546-7-11
  35. Hsieh, M. Y., Hsieh, M. J., Lo, Y. S., Lin, C. C., Chuang, Y. C., Chen, M. K. and Chou, M. C. (2020) Modulating effect of Coronarin D in 5-fluorouracil resistance human oral cancer cell lines induced apoptosis and cell cycle arrest through JNK1/2 signaling pathway. Biomed. Pharmacother. 128, 110318. https://doi.org/10.1016/j.biopha.2020.110318
  36. Hu, X. F., Yao, J., Gao, S. G., Wang, X. S., Peng, X. Q., Yang, Y. T. and Feng, X. S. (2013) Nrf2 overexpression predicts prognosis and 5-FU resistance in gastric cancer. Asian Pac. J. Cancer Prev. 14, 5231-5235. https://doi.org/10.7314/APJCP.2013.14.9.5231
  37. Hu, X. Y., Liang, J. Y., Guo, X. J., Liu, L. and Guo, Y. B. (2015) 5-Fluorouracil combined with apigenin enhances anticancer activity through mitochondrial membrane potential (DeltaPsim)-mediated apoptosis in hepatocellular carcinoma. Clin. Exp. Pharmacol. Physiol. 42, 146-153. https://doi.org/10.1111/1440-1681.12333
  38. Huang, Q., Lu, G., Shen, H. M., Chung, M. C. and Ong, C. N. (2007) Anti-cancer properties of anthraquinones from rhubarb. Med. Res. Rev. 27, 609-630. https://doi.org/10.1002/med.20094
  39. Hwang, I. T., Chung, Y. M., Kim, J. J., Chung, J. S., Kim, B. S., Kim, H. J., Kim, J. S. and Yoo, Y. D. (2007) Drug resistance to 5-FU linked to reactive oxygen species modulator 1. Biochem. Biophys. Res. Commun. 359, 304-310. https://doi.org/10.1016/j.bbrc.2007.05.088
  40. Ikeda, N., Nakajima, Y., Tokuhara, T., Hattori, N., Sho, M., Kanehiro, H. and Miyake, M. (2003) Clinical significance of aminopeptidase N/CD13 expression in human pancreatic carcinoma. Clin. Cancer Res. 9, 1503-1508.
  41. Jarmi, T. and Agarwal, A. (2009) Heme oxygenase and renal disease. Curr. Hypertens. Rep. 11, 56-62. https://doi.org/10.1007/s11906-009-0011-z
  42. Jin, P., Wong, C. C., Mei, S., He, X., Qian, Y. and Sun, L. (2016) MK2206 co-treatment with 5-fluorouracil or doxorubicin enhances chemosensitivity and apoptosis in gastric cancer by attenuation of Akt phosphorylation. OncoTargets Ther. 9, 4387-4396. https://doi.org/10.2147/OTT.S106303
  43. Juhasz, A., Markel, S., Gaur, S., Liu, H., Lu, J., Jiang, G., Wu, X., Antony, S., Wu, Y., Melillo, G., Meitzler, J. L., Haines, D. C., Butcher, D., Roy, K. and Doroshow, J. H. (2017) NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J. Biol. Chem. 292, 7866-7887. https://doi.org/10.1074/jbc.M116.768283
  44. Kang, K. A., Piao, M. J., Kim, K. C., Kang, H. K., Chang, W. Y., Park, I. C., Keum, Y. S., Surh, Y. J. and Hyun, J. W. (2014) Epigenetic modification of Nrf2 in 5-fluorouracil-resistant colon cancer cells: involvement of TET-dependent DNA demethylation. Cell Death Dis. 5, e1183. https://doi.org/10.1038/cddis.2014.149
  45. Kim, J. K., Kang, K. A., Piao, M. J., Ryu, Y. S., Han, X., Fernando, P. M., Oh, M. C., Park, J. E., Shilnikova, K., Boo, S. J., Na, S. Y., Jeong, Y. J., Jeong, S. U. and Hyun, J. W. (2016) Endoplasmic reticulum stress induces 5-fluorouracil resistance in human colon cancer cells. Environ. Toxicol. Pharmacol. 44, 128-133. https://doi.org/10.1016/j.etap.2016.05.005
  46. Kim, J. S., Ahn, K. J., Kim, J. A., Kim, H. M., Lee, J. D., Lee, J. M., Kim, S. J. and Park, J. H. (2008) Role of reactive oxygen speciesmediated mitochondrial dysregulation in 3-bromopyruvate induced cell death in hepatoma cells : ROS-mediated cell death by 3-BrPA. J. Bioenerg. Biomembr. 40, 607-618. https://doi.org/10.1007/s10863-008-9188-0
  47. Kim, K. K., Kawar, N. M., Singh, R. K., Lange, T. S., Brard, L. and Moore, R. G. (2011) Tetrathiomolybdate induces doxorubicin sensitivity in resistant tumor cell lines. Gynecol. Oncol. 122, 183-189. https://doi.org/10.1016/j.ygyno.2011.03.035
  48. Kim, K. K., Lange, T. S., Singh, R. K., Brard, L. and Moore, R. G. (2012) Tetrathiomolybdate sensitizes ovarian cancer cells to anticancer drugs doxorubicin, fenretinide, 5-fluorouracil and mitomycin C. BMC Cancer 12, 147. https://doi.org/10.1186/1471-2407-12-147
  49. Ko, Y. H., Pedersen, P. L. and Geschwind, J. F. (2001) Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett. 173, 83-91. https://doi.org/10.1016/S0304-3835(01)00667-X
  50. Kodach, L. L., Bos, C. L., Duran, N., Peppelenbosch, M. P., Ferreira, C. V. and Hardwick, J. C. (2006) Violacein synergistically increases 5-fluorouracil cytotoxicity, induces apoptosis and inhibits Akt-mediated signal transduction in human colorectal cancer cells. Carcinogenesis 27, 508-516. https://doi.org/10.1093/carcin/bgi307
  51. Kong, L., Wang, X., Zhang, K., Yuan, W., Yang, Q., Fan, J., Wang, P. and Liu, Q. (2015) Gypenosides synergistically enhances the anti-tumor effect of 5-fluorouracil on colorectal cancer in vitro and in vivo: a role for oxidative stress-mediated DNA damage and p53 activation. PLoS ONE 10, e0137888. https://doi.org/10.1371/journal.pone.0137888
  52. Kumar, B., Koul, S., Khandrika, L., Meacham, R. B. and Koul, H. K. (2008) Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res. 68, 1777-1785. https://doi.org/10.1158/0008-5472.CAN-07-5259
  53. Li, C. Y., Wang, E. Q., Cheng, Y. and Bao, J. K. (2011) Oridonin: an active diterpenoid targeting cell cycle arrest, apoptotic and autophagic pathways for cancer therapeutics. Int. J. Biochem. Cell Biol. 43, 701-704. https://doi.org/10.1016/j.biocel.2011.01.020
  54. Li, J., Hou, N., Faried, A., Tsutsumi, S. and Kuwano, H. (2010) Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model. Eur. J. Cancer 46, 1900-1909. https://doi.org/10.1016/j.ejca.2010.02.021
  55. Li, M., Cui, Z. G., Zakki, S. A., Feng, Q., Sun, L., Feril, L. B., Jr. and Inadera, H. (2019a) Aluminum chloride causes 5-fluorouracil resistance in hepatocellular carcinoma HepG2 cells. J. Cell. Physiol. 234, 20249-20265. https://doi.org/10.1002/jcp.28625
  56. Li, Q., Wei, L., Lin, S., Chen, Y., Lin, J. and Peng, J. (2019b) Synergistic effect of kaempferol and 5fluorouracil on the growth of colorectal cancer cells by regulating the PI3K/Akt signaling pathway. Mol. Med. Rep. 20, 728-734.
  57. Liang, W., Cai, A., Chen, G., Xi, H., Wu, X., Cui, J., Zhang, K., Zhao, X., Yu, J., Wei, B. and Chen, L. (2016) Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species. Sci. Rep. 6, 38267. https://doi.org/10.1038/srep38267
  58. Lin, C. K., Liu, S. T., Wu, Z. S., Wang, Y. C. and Huang, S. M. (2021) Mechanisms of cisplatin in combination with repurposed drugs against human endometrial carcinoma cells. Life (Basel) 11, 160.
  59. Liou, G. Y. and Storz, P. (2010) Reactive oxygen species in cancer. Free Radic. Res. 44, 479-496. https://doi.org/10.3109/10715761003667554
  60. Liu, M. P., Liao, M., Dai, C., Chen, J. F., Yang, C. J., Liu, M., Chen, Z. G. and Yao, M. C. (2016a) Sanguisorba officinalis L synergistically enhanced 5-fluorouracil cytotoxicity in colorectal cancer cells by promoting a reactive oxygen species-mediated, mitochondriacaspase-dependent apoptotic pathway. Sci. Rep. 6, 34245. https://doi.org/10.1038/srep34245
  61. Liu, R., Chen, Y., Liu, G., Li, C., Song, Y., Cao, Z., Li, W., Hu, J., Lu, C. and Liu, Y. (2020) PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis. 11, 797. https://doi.org/10.1038/s41419-020-02998-6
  62. Liu, Y., Li, Q., Zhou, L., Xie, N., Nice, E. C., Zhang, H., Huang, C. and Lei, Y. (2016b) Cancer drug resistance: redox resetting renders a way. Oncotarget 7, 42740-42761.
  63. Longley, D. B., Harkin, D. P. and Johnston, P. G. (2003) 5-Fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer 3, 330-338. https://doi.org/10.1038/nrc1074
  64. Look, A. T., Ashmun, R. A., Shapiro, L. H. and Peiper, S. C. (1989) Human myeloid plasma membrane glycoprotein CD13 (gp150) is identical to aminopeptidase N. J. Clin. Invest. 83, 1299-1307. https://doi.org/10.1172/JCI114015
  65. Mates, J. M. and Sanchez-Jimenez, F. M. (2000) Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int. J. Biochem. Cell Biol. 32, 157-170. https://doi.org/10.1016/S1357-2725(99)00088-6
  66. Mehrzad, V., Roayaei, M., Peikar, M. S., Nouranian, E., Mokarian, F., Khani, M. and Farzannia, S. (2016) Bevacizumab plus FOLFOX or FOLFIRI regimens on patients with unresectable liver-only metastases of metastatic colorectal cancer. Adv. Biomed. Res. 5, 10.
  67. Mina-Osorio, P. (2008) The moonlighting enzyme CD13: old and new functions to target. Trends Mol. Med. 14, 361-371. https://doi.org/10.1016/j.molmed.2008.06.003
  68. Moi, P., Chan, K., Asunis, I., Cao, A. and Kan, Y. W. (1994) Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc. Natl. Acad. Sci. U.S.A. 91, 9926-9930. https://doi.org/10.1073/pnas.91.21.9926
  69. Moon, D., Kang, H. K., Kim, J. and Yoon, S. P. (2020) Yeast extract induces apoptosis and cell cycle arrest via activating p38 signal pathway in colorectal cancer cells. Ann. Clin. Lab. Sci. 50, 31-44.
  70. Nishikawa, M. (2008) Reactive oxygen species in tumor metastasis. Cancer Lett. 266, 53-59. https://doi.org/10.1016/j.canlet.2008.02.031
  71. Okada, M., Shibuya, K., Sato, A., Seino, S., Suzuki, S., Seino, M. and Kitanaka, C. (2014) Targeting the K-Ras--JNK axis eliminates cancer stem-like cells and prevents pancreatic tumor formation. Oncotarget 5, 5100-5112. https://doi.org/10.18632/oncotarget.2087
  72. Okano, J., Nagahara, T., Matsumoto, K. and Murawaki, Y. (2008) Caffeine inhibits the proliferation of liver cancer cells and activates the MEK/ERK/EGFR signalling pathway. Basic Clin. Pharmacol. Toxicol. 102, 543-551. https://doi.org/10.1111/j.1742-7843.2008.00231.x
  73. Pazdur, R., Hoff, P. M., Medgyesy, D., Royce, M. and Brito, R. (1998) The oral fluorouracil prodrugs. Oncology (Williston Park) 12, 48-51.
  74. Qi, Y., Qi, W., Liu, S., Sun, L., Ding, A., Yu, G., Li, H., Wang, Y., Qiu, W. and Lv, J. (2020) TSPAN9 suppresses the chemosensitivity of gastric cancer to 5-fluorouracil by promoting autophagy. Cancer Cell Int. 20, 4. https://doi.org/10.1186/s12935-019-1089-2
  75. Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. and Nitiss, J. L. (1999) Biologically active carbazole alkaloids from Murraya koenigii. J. Agric. Food Chem. 47, 444-447. https://doi.org/10.1021/jf9805808
  76. Riahi-Chebbi, I., Haoues, M., Essafi, M., Zakraoui, O., Fattouch, S., Karoui, H. and Essafi-Benkhadir, K. (2015) Quince peel polyphenolic extract blocks human colon adenocarcinoma LS174 cell growth and potentiates 5-fluorouracil efficacy. Cancer Cell Int. 16, 1. https://doi.org/10.1186/s12935-016-0276-7
  77. Riahi-Chebbi, I., Souid, S., Othman, H., Haoues, M., Karoui, H., Morel, A., Srairi-Abid, N., Essafi, M. and Essafi-Benkhadir, K. (2019) The Phenolic compound Kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells. Sci. Rep. 9, 195. https://doi.org/10.1038/s41598-018-36808-z
  78. Sakai, K., Hattori, T., Sagawa, K., Yokoyama, M. and Takatsuki, K. (1987) Biochemical and functional characterization of MCS-2 antigen (CD13) on myeloid leukemic cells and polymorphonuclear leukocytes. Cancer Res. 47, 5572-5576.
  79. Shukla, S. and Gupta, S. (2010) Apigenin: a promising molecule for cancer prevention. Pharm. Res. 27, 962-978. https://doi.org/10.1007/s11095-010-0089-7
  80. Solis, W. A., Dalton, T. P., Dieter, M. Z., Freshwater, S., Harrer, J. M., He, L., Shertzer, H. G. and Nebert, D. W. (2002) Glutamate-cysteine ligase modifier subunit: mouse Gclm gene structure and regulation by agents that cause oxidative stress. Biochem. Pharmacol. 63, 1739-1754. https://doi.org/10.1016/S0006-2952(02)00897-3
  81. Soriano, F. X., Baxter, P., Murray, L. M., Sporn, M. B., Gillingwater, T. H. and Hardingham, G. E. (2009) Transcriptional regulation of the AP-1 and Nrf2 target gene sulfiredoxin. Mol. Cells 27, 279-282. https://doi.org/10.1007/s10059-009-0050-y
  82. Souglakos, J., Androulakis, N., Syrigos, K., Polyzos, A., Ziras, N., Athanasiadis, A., Kakolyris, S., Tsousis, S., Kouroussis, C., Vamvakas, L., Kalykaki, A., Samonis, G., Mavroudis, D. and Georgoulias, V. (2006) FOLFOXIRI (folinic acid, 5-fluorouracil, oxaliplatin and irinotecan) vs FOLFIRI (folinic acid, 5-fluorouracil and irinotecan) as first-line treatment in metastatic colorectal cancer (MCC): a multicentre randomised phase III trial from the hellenic oncology research group (HORG). Br. J. Cancer 94, 798-805. https://doi.org/10.1038/sj.bjc.6603011
  83. Sui, X., Kong, N., Wang, X., Fang, Y., Hu, X., Xu, Y., Chen, W., Wang, K., Li, D., Jin, W., Lou, F., Zheng, Y., Hu, H., Gong, L., Zhou, X., Pan, H. and Han, W. (2014) JNK confers 5-fluorouracil resistance in p53-deficient and mutant p53-expressing colon cancer cells by inducing survival autophagy. Sci. Rep. 4, 4694. https://doi.org/10.1038/srep04694
  84. Sun, Z. P., Zhang, J., Shi, L. H., Zhang, X. R., Duan, Y., Xu, W. F., Dai, G. and Wang, X. J. (2015) Aminopeptidase N inhibitor 4cc synergizes antitumor effects of 5-fluorouracil on human liver cancer cells through ROS-dependent CD13 inhibition. Biomed. Pharmacother. 76, 65-72. https://doi.org/10.1016/j.biopha.2015.10.023
  85. Suzuki, S., Okada, M., Shibuya, K., Seino, M., Sato, A., Takeda, H., Seino, S., Yoshioka, T. and Kitanaka, C. (2015) JNK suppression of chemotherapeutic agents-induced ROS confers chemoresistance on pancreatic cancer stem cells. Oncotarget 6, 458-470. https://doi.org/10.18632/oncotarget.2693
  86. Tang, J., Feng, Y., Tsao, S., Wang, N., Curtain, R. and Wang, Y. (2009) Berberine and Coptidis rhizoma as novel antineoplastic agents: a review of traditional use and biomedical investigations. J. Ethnopharmacol. 126, 5-17. https://doi.org/10.1016/j.jep.2009.08.009
  87. Tokuhara, T., Hattori, N., Ishida, H., Hirai, T., Higashiyama, M., Kodama, K. and Miyake, M. (2006) Clinical significance of aminopeptidase N in non-small cell lung cancer. Clin. Cancer Res. 12, 3971-3978. https://doi.org/10.1158/1078-0432.CCR-06-0338
  88. Tong, H., Li, T., Qiu, W. and Zhu, Z. (2019) Claudin-1 silencing increases sensitivity of liver cancer HepG2 cells to 5-fluorouracil by inhibiting autophagy. Oncol. Lett. 18, 5709-5716.
  89. Torres, M. and Forman, H. J. (2003) Redox signaling and the MAP kinase pathways. BioFactors 17, 287-296. https://doi.org/10.1002/biof.5520170128
  90. Umezawa, H., Aoyagi, T., Suda, H., Hamada, M. and Takeuchi, T. (1976) Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. J. Antibiot. 29, 97-99. https://doi.org/10.7164/antibiotics.29.97
  91. Ushio-Fukai, M. and Nakamura, Y. (2008) Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett. 266, 37-52. https://doi.org/10.1016/j.canlet.2008.02.044
  92. Wang, M., Huang, C., Su, Y., Yang, C., Xia, Q. and Xu, D. J. (2017a) Astragaloside II sensitizes human hepatocellular carcinoma cells to 5-fluorouracil via suppression of autophagy. J. Pharm. Pharmacol. 69, 743-752. https://doi.org/10.1111/jphp.12706
  93. Wang, X., Wang, Y., Gu, J., Zhou, D., He, Z., Wang, X. and Ferrone, S. (2017b) ADAM12-L confers acquired 5-fluorouracil resistance in breast cancer cells. Sci. Rep. 7, 9687. https://doi.org/10.1038/s41598-017-10468-x
  94. Wang, Z., Gu, C., Wang, X., Lang, Y., Wu, Y., Wu, X., Zhu, X., Wang, K. and Yang, H. (2019) Caffeine enhances the anti-tumor effect of 5-fluorouracil via increasing the production of reactive oxygen species in hepatocellular carcinoma. Med. Oncol. 36, 97. https://doi.org/10.1007/s12032-019-1323-8
  95. Wei, H. (1992) Activation of oncogenes and/or inactivation of anti-oncogenes by reactive oxygen species. Med. Hypotheses 39, 267-270. https://doi.org/10.1016/0306-9877(92)90120-2
  96. Wei, X., Mo, X., An, F., Ji, X. and Lu, Y. (2018) 2',4'-Dihydroxy-6'-methoxy-3',5'-dimethylchalcone, a potent Nrf2/ARE pathway inhibitor, reverses drug resistance by decreasing glutathione synthesis and drug efflux in BEL-7402/5-FU cells. Food Chem. Toxicol. 119, 252-259. https://doi.org/10.1016/j.fct.2018.04.001
  97. Wu, Q., Wu, W., Fu, B., Shi, L., Wang, X. and Kuca, K. (2019) JNK signaling in cancer cell survival. Med. Res. Rev. 39, 2082-2104. https://doi.org/10.1002/med.21574
  98. Xie, X., Liu, H., Wang, Y., Zhou, Y., Yu, H., Li, G., Ruan, Z., Li, F., Wang, X. and Zhang, J. (2016) Nicotinamide N-methyltransferase enhances resistance to 5-fluorouracil in colorectal cancer cells through inhibition of the ASK1-p38 MAPK pathway. Oncotarget 7, 45837-45848. https://doi.org/10.18632/oncotarget.9962
  99. Xu, Y., Wellner, D. and Scheinberg, D. A. (1997) Cryptic and regulatory epitopes in CD13/aminopeptidase N. Exp. Hematol. 25, 521-529.
  100. Yan, J., Dou, X., Zhou, J., Xiong, Y., Mo, L., Li, L. and Lei, Y. (2019) Tubeimoside-I sensitizes colorectal cancer cells to chemotherapy by inducing ROS-mediated impaired autophagolysosomes accumulation. J. Exp. Clin. Cancer Res. 38, 353. https://doi.org/10.1186/s13046-019-1355-0
  101. You, F., Aoki, K., Ito, Y. and Nakashima, S. (2009) AKT plays a pivotal role in the acquisition of resistance to 5-fluorouracil in human squamous carcinoma cells. Mol. Med. Rep. 2, 609-613.
  102. Yu, L., Ma, R., Wang, Y. and Nishino, H. (1994) Potent anti-tumor activity and low toxicity of tubeimoside 1 isolated from Bolbostemma paniculatum. Planta Med. 60, 204-208. https://doi.org/10.1055/s-2006-959459
  103. Zhang, D., Zhou, Q., Huang, D., He, L., Zhang, H., Hu, B., Peng, H. and Ren, D. (2019) ROS/JNK/c-Jun axis is involved in oridonininduced caspase-dependent apoptosis in human colorectal cancer cells. Biochem. Biophys. Res. Commun. 513, 594-601. https://doi.org/10.1016/j.bbrc.2019.04.011
  104. Zhang, D. D. (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab. Rev. 38, 769-789. https://doi.org/10.1080/03602530600971974
  105. Zhang, P., Lai, Z. L., Chen, H. F., Zhang, M., Wang, A., Jia, T., Sun, W. Q., Zhu, X. M., Chen, X. F., Zhao, Z. and Zhang, J. (2017) Curcumin synergizes with 5-fluorouracil by impairing AMPK/ULK1-dependent autophagy, AKT activity and enhancing apoptosis in colon cancer cells with tumor growth inhibition in xenograft mice. J. Exp. Clin. Cancer Res. 36, 190. https://doi.org/10.1186/s13046-017-0661-7
  106. Zhang, R., Pan, T., Xiang, Y., Zhang, M., Feng, J., Liu, S., Duan, T., Chen, P., Zhai, B., Chen, X., Wang, W., Chen, B., Han, X., Chen, L., Yan, L., Jin, T., Liu, Y., Li, G., Huang, X., Zhang, W., Sun, Y., Li, Q., Zhang, Q., Zhuo, L., Xie, T., Wu, Q. and Sui, X. (2020) betaElemene reverses the resistance of p53-deficient colorectal cancer cells to 5-fluorouracil by inducing pro-death autophagy and cyclin D3-dependent cycle arrest. Front. Bioeng. Biotechnol. 8, 378. https://doi.org/10.3389/fbioe.2020.00378
  107. Zhao, H., Liu, Q., Wang, S., Dai, F., Cheng, X., Cheng, X., Chen, W., Zhang, M. and Chen, D. (2017) In vitro additive antitumor effects of dimethoxycurcumin and 5-fluorouracil in colon cancer cells. Cancer Med. 6, 1698-1706. https://doi.org/10.1002/cam4.1114
  108. Zheng, W., Zhou, C. Y., Zhu, X. Q., Wang, X. J., Li, Z. Y., Chen, X. C., Chen, F., Che, X. Y. and Xie, X. (2018) Oridonin enhances the cytotoxicity of 5-FU in renal carcinoma cells by inducting necroptotic death. Biomed. Pharmacother. 106, 175-182. https://doi.org/10.1016/j.biopha.2018.06.111
  109. Zou, X., Liang, J., Sun, J., Hu, X., Lei, L., Wu, D. and Liu, L. (2016) Allicin sensitizes hepatocellular cancer cells to anti-tumor activity of 5-fluorouracil through ROS-mediated mitochondrial pathway. J. Pharmacol. Sci. 131, 233-240. https://doi.org/10.1016/j.jphs.2016.04.017
  110. Zu, C., Qin, G., Yang, C., Liu, N., He, A., Zhang, M. and Zheng, X. (2018) Low dose Emodin induces tumor senescence for boosting breast cancer chemotherapy via silencing NRARP. Biochem. Biophys. Res. Commun. 505, 973-978. https://doi.org/10.1016/j.bbrc.2018.09.045