DOI QR코드

DOI QR Code

Growth Inhibitory and Pro-Apoptotic Effects of Hirsuteine in Chronic Myeloid Leukemia Cells through Targeting Sphingosine Kinase 1

  • Gao, Shan (Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University) ;
  • Guo, Tingting (Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University) ;
  • Luo, Shuyu (Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University) ;
  • Zhang, Yan (Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University) ;
  • Ren, Zehao (Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University) ;
  • Lang, Xiaona (Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University) ;
  • Hu, Gaoyong (State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine) ;
  • Zuo, Duo (Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University) ;
  • Jia, Wenqing (Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University) ;
  • Kong, Dexin (Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University) ;
  • Yu, Haiyang (State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine) ;
  • Qiu, Yuling (Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University)
  • Received : 2022.02.14
  • Accepted : 2022.05.13
  • Published : 2022.11.01

Abstract

Chronic myeloid leukemia (CML) is a slowly progressing hematopoietic cell disorder. Sphingosine kinase 1 (SPHK1) plays established roles in tumor initiation, progression, and chemotherapy resistance in a wide range of cancers, including leukemia. However, small-molecule inhibitors targeting SPHK1 in CML still need to be developed. This study revealed the role of SPHK1 in CML and investigated the potential anti-leukemic activity of hirsuteine (HST), an indole alkaloid obtained from the oriental plant Uncaria rhynchophylla, in CML cells. These results suggest that SPHK1 is highly expressed in CML cells and that overexpression of SPHK1 represents poor clinical outcomes in CML patients. HST exposure led to G2/M phase arrest, cellular apoptosis, and downregulation of Cyclin B1 and CDC2 and cleavage of Caspase 3 and PARP in CML cells. HST shifted sphingolipid rheostat from sphingosine 1-phosphate (S1P) towards the ceramide coupled with a marked inhibition of SPHK1. Mechanistically, HST significantly blocked SPHK1/S1P/S1PR1 and BCR-ABL/PI3K/Akt pathways. In addition, HST can be docked with residues of SPHK1 and shifts the SPHK1 melting curve, indicating the potential protein-ligand interactions between SPHK1 and HST in both CML cells. SPHK1 overexpression impaired apoptosis and proliferation of CML cells induced by HST alone. These results suggest that HST, which may serve as a novel and specific SPHK1 inhibitor, exerts anti-leukemic activity by inhibiting the SPHK1/S1P/S1PR1 and BCR-ABL/PI3K/Akt pathways in CML cells, thus conferring HST as a promising anti-leukemic drug for CML therapy in the future.

Keywords

Acknowledgement

This work was supported jointly by grants from the National Natural Science Foundation of China (No. 81973570 to YQ, Nos. 81673464 and 82073890 to DK, No. 81873089 to HY), the National Key Research and Development Program of China (No: 2021YFE0203100 to HY).

References

  1. Amir, M. and Javed, S. (2021) A review on the therapeutic role of TKIs in case of CML in combination with epigenetic drugs. Front. Genet. 12, 742802. https://doi.org/10.3389/fgene.2021.742802
  2. Blaho, V. A. and Hla, T. (2014) An update on the biology of sphingosine 1-phosphate receptors. J. Lipid Res. 55, 1596-1608. https://doi.org/10.1194/jlr.R046300
  3. Codini, M., Garcia-Gil, M. and Albi, E. (2021) Cholesterol and sphingolipid enriched lipid rafts as therapeutic targets in cancer. Int. J. Mol. Sci. 22, 726. https://doi.org/10.3390/ijms22020726
  4. Companioni, O., Mir, C., Garcia-Mayea, Y. and LLeonart, M. E. (2021) Targeting sphingolipids for cancer therapy. Front. Oncol. 11, 745092. https://doi.org/10.3389/fonc.2021.745092
  5. Cortes, J. and Lang, F. B. (2021) Third-line therapy for chronic myeloid leukemia: current status and future directions. J. Hematol. Oncol. 14, 44. https://doi.org/10.1186/s13045-021-01055-9
  6. Ding, T. D., Zhi, Y., Xie, W. L., Yao, Q. Q. and Liu, B. (2021) Rational design of SphK inhibitors using crystal structures aided by computer. Eur. J. Med. Chem. 213, 113164. https://doi.org/10.1016/j.ejmech.2021.113164
  7. Green, C. D., Maceyka, M., Cowart, L. A. and Spiegel, S. (2021) Sphingolipids in metabolic disease: the good, the bad, and the unknown. Cell Metab. 33, 1293-1306. https://doi.org/10.1016/j.cmet.2021.06.006
  8. Hannun, Y. A. and Obeid, L. M. (2018) Author correction: sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 673. https://doi.org/10.1038/s41580-018-0046-6
  9. Huang, B. Y., Zeng, Y., Li, Y. J., Huang, X. J., Hu, N., Yao, N., Chen, M. F., Yang, Z. G., Chen, Z. S., Zhang, D. M. and Zeng, C. Q. (2017) Uncaria alkaloids reverse ABCB1-mediated cancer multidrug resistance. Int. J. Oncol. 51, 257-268. https://doi.org/10.3892/ijo.2017.4005
  10. Jairajpuri, D. S., Mohammad, T., Adhikari, K., Gupta, P., Hasan, G. M., Alajmi, M. F., Rehman, M. T., Hussain, A. and Hassan, M. I. (2020) Identification of sphingosine kinase-1 inhibitors from bioactive natural products targeting cancer therapy. ACS Omega 5, 14720-14729. https://doi.org/10.1021/acsomega.0c01511
  11. Kushida, H., Matsumoto, T. and Ikarashi, Y. (2021) Properties, pharmacology, and pharmacokinetics of active indole and oxindole alkaloids in uncaria hook. Front. Pharmacol. 12, 688670. https://doi.org/10.3389/fphar.2021.688670
  12. Li, Q. F., Huang, W. R., Duan, H. F., Wang, H., Wu, C. T. and Wang, L. S. (2007) Sphingosine kinase-1 mediates BCR/ABL-induced upregulation of Mcl-1 in chronic myeloid leukemia cells. Oncogene 26, 7904-7908. https://doi.org/10.1038/sj.onc.1210587
  13. Lion, T. (2011) SP 108 resistance to tyrosine kinase inhibitors in chronic myeloid leukemia. Eur. J. Cancer 47, S3. https://doi.org/10.1016/S0959-8049(11)72600-4
  14. Liu, H. W., Chen, Q., Lu, D., Pang, X., Yin, S. S., Wang, K. L., Wang, R., Yang, S. S., Zhang, Y., Qiu, Y. L., Wang, T. and Yu, H. Y. (2020) HTBPI, an active phenanthroindolizidine alkaloid, inhibits liver tumorigenesis by targeting Akt. FASEB J. 34, 12255-12268. https://doi.org/10.1096/fj.202000254R
  15. Lupino, L., Perry, T., Margielewska, S., Hollows, R., Ibrahim, M., Care, M., Allegood, J., Tooze, R., Sabbadini, R., Reynolds, G., Bicknell, R., Rudzki, Z., Lin, Hock. Y., Zanetto, U., Wei, W., Simmons, W., Spiegel, S., Woodman, C. B. J., Rowe, M., Vrzalikova, K. and Murray, P. G. (2019) Sphingosine-1-phosphate signalling drives an angiogenic transcriptional programme in diffuse large B cell lymphoma. Leukemia 33, 2884-2897. https://doi.org/10.1038/s41375-019-0478-9
  16. Mohd Sairazi, N. S. and Sirajudeen, K. N. S. (2020) Natural products and their bioactive compounds: neuroprotective potentials against neurodegenerative diseases. Evid. Based Complement. Alternat. Med. 2020, 6565396.
  17. Mojtahedi, H., Yazdanpanah, N. and Rezaei, N. (2021) Chronic myeloid leukemia stem cells: targeting therapeutic implications. Stem Cell Res. Ther. 12, 603. https://doi.org/10.1186/s13287-021-02659-1
  18. Osman, A. E. G. and Deininger, M. W. (2021) Chronic myeloid leukemia: modern therapies, current challenges and future directions. Blood Rev. 49, 100825. https://doi.org/10.1016/j.blre.2021.100825
  19. Patmanathan, S. N., Wang, W., Yap, L. F., Herr, D. R. and Paterson, I. C. (2017) Mechanisms of sphingosine 1-phosphate receptor signalling in cancer. Cell. Signal. 34, 66-75. https://doi.org/10.1016/j.cellsig.2017.03.002
  20. Pitman, M. R. and Pitson, S. M. (2010) Inhibitors of the sphingosine kinase pathway as potential therapeutics. Curr. Cancer Drug Targets 10, 354-367. https://doi.org/10.2174/156800910791208599
  21. Pitson, S. M., Moretti, P. A. B., Zebol, J. R., Lynn, H. E., Xia, P., Vadas, M. A. and Wattenberg, B. W. (2003) Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J. 22, 5491-5500. https://doi.org/10.1093/emboj/cdg540
  22. Qi, W., Yue, S. J., Sun, J. H., Simpkins, J. W., Zhang, L. and Yuan, D. (2014) Alkaloids from the hook-bearing branch of Uncaria rhynchophylla and their neuroprotective effects against glutamate-induced HT22 cell death. J. Asian Nat. Prod. Res. 16, 876-883. https://doi.org/10.1080/10286020.2014.918109
  23. Ren, S. Y., Xin, C. Y., Pfeilschifter, J. and Huwiler, A. (2010) A novel mode of action of the putative sphingosine kinase inhibitor 2-(phydroxyanilino)-4-(p-chlorophenyl) thiazole (SKI II): induction of lysosomal sphingosine kinase 1 degradation. Cell. Physiol. Biochem. 26, 97-104. https://doi.org/10.1159/000315110
  24. Sukocheva, O. A., Furuya, H., Ng, M. L., Friedemann, M., Menschikowski, M., Tarasov, V. V., Chubarev, V. N., Klochkov, S. G., Neganova, M. E., Mangoni, A. A., Aliev, G. and Bishayee, A. (2020) Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: a novel therapeutic target. Pharmacol. Ther. 207, 107464. https://doi.org/10.1016/j.pharmthera.2019.107464
  25. Velazquez, F. N., Hernandez-Corbacho, M., Trayssac, M., Stith, J. L., Bonica, J., Jean, B., Pulkoski-Gross, M. J., Carroll, B. L., Salama, M. F., Hannun, Y. A. and Snider, A. J. (2021) Bioactive sphingolipids: advancements and contributions from the laboratory of Dr. Lina M. Obeid. Cell. Signal. 79, 109875. https://doi.org/10.1016/j.cellsig.2020.109875
  26. Wilson, B. A. P., Thornburg, C. C., Henrich, C. J., Grkovic, T. and O'Keefe, B. R. (2020) Creating and screening natural product libraries. Nat. Prod. Rep. 37, 893-918. https://doi.org/10.1039/C9NP00068B
  27. Yin, S. S., Qiu, Y. L., Jin, C. Y., Wang, R., Wu, S., Liu, H. W., Koo, S., Han, L. F., Zhang, Y., Gao, X. M., Pang, X., Wang, T. and Yu, H. Y. (2019) 7-Deoxynarciclasine shows promising antitumor efficacy by targeting Akt against hepatocellular carcinoma. Int. J. Cancer 145, 3334-3346. https://doi.org/10.1002/ijc.32395
  28. Yin, S. S., Yang, S. S., Luo, Y. M., Lu, J., Hu, G. Y., Wang, K. L., Shao, Y. Y., Zhou, S. Y., Koo, S., Qiu, Y. L., Wang, T. and Yu, H. Y. (2021) Cyclin-dependent kinase 1 as a potential target for lycorine against hepatocellular carcinoma. Biochem. Pharmacol. 193, 114806. https://doi.org/10.1016/j.bcp.2021.114806
  29. Yu, H. Y., Yin, S. S., Zhou, S. Y., Shao, Y. Y., Sun, J. C., Pang, X., Han, L. F., Zhang, Y., Gao, X. M., Jin, C. Y., Qiu, Y. L. and Wang, T. (2018) Magnolin promotes autophagy and cell cycle arrest via blocking LIF/Stat3/Mcl-1 axis in human colorectal cancers. Cell Death Dis. 9, 702 https://doi.org/10.1038/s41419-018-0660-4
  30. Zhang, L., Chen, T., Dou, Y. H., Zhang, S. L., Liu, H. Y., Khishignyam, T., Li, X. F., Zuo, D., Zhang, Z., Jin, M. H., Wang, R., Qiu, Y. L., Zhong, Y. X. and Kong, D. X. (2019) Atorvastatin exerts antileukemia activity via inhibiting mevalonate-YAP axis in K562 and HL60 cells. Front. Oncol. 9, 1032. https://doi.org/10.3389/fonc.2019.01032
  31. Zheng, X. J., Li, W., Ren, L. W., Liu, J. Y., Pang, X. C., Chen, X. P., Kang, D., Wang, J. H. and Du, G. H. (2019) The sphingosine kinase-1/sphingosine-1-phosphate axis in cancer: potential target for anticancer therapy. Pharmacol. Ther. 195, 85-99. https://doi.org/10.1016/j.pharmthera.2018.10.011
  32. Zhou, Q. X., Chen, Y. L., Chen, X., Zhao, W. N., Zhong, Y. X., Wang, R., Jin, M. H., Qiu, Y. L. and Kong, D. X. (2016) In vitro antileukemia activity of ZSTK474 on K562 and multidrug resistant K562/A02 cells. Int. J. Biol. Sci. 12, 631-638. https://doi.org/10.7150/ijbs.14878