Acknowledgement
This work was supported jointly by grants from the National Natural Science Foundation of China (No. 81973570 to YQ, Nos. 81673464 and 82073890 to DK, No. 81873089 to HY), the National Key Research and Development Program of China (No: 2021YFE0203100 to HY).
References
- Amir, M. and Javed, S. (2021) A review on the therapeutic role of TKIs in case of CML in combination with epigenetic drugs. Front. Genet. 12, 742802. https://doi.org/10.3389/fgene.2021.742802
- Blaho, V. A. and Hla, T. (2014) An update on the biology of sphingosine 1-phosphate receptors. J. Lipid Res. 55, 1596-1608. https://doi.org/10.1194/jlr.R046300
- Codini, M., Garcia-Gil, M. and Albi, E. (2021) Cholesterol and sphingolipid enriched lipid rafts as therapeutic targets in cancer. Int. J. Mol. Sci. 22, 726. https://doi.org/10.3390/ijms22020726
- Companioni, O., Mir, C., Garcia-Mayea, Y. and LLeonart, M. E. (2021) Targeting sphingolipids for cancer therapy. Front. Oncol. 11, 745092. https://doi.org/10.3389/fonc.2021.745092
- Cortes, J. and Lang, F. B. (2021) Third-line therapy for chronic myeloid leukemia: current status and future directions. J. Hematol. Oncol. 14, 44. https://doi.org/10.1186/s13045-021-01055-9
- Ding, T. D., Zhi, Y., Xie, W. L., Yao, Q. Q. and Liu, B. (2021) Rational design of SphK inhibitors using crystal structures aided by computer. Eur. J. Med. Chem. 213, 113164. https://doi.org/10.1016/j.ejmech.2021.113164
- Green, C. D., Maceyka, M., Cowart, L. A. and Spiegel, S. (2021) Sphingolipids in metabolic disease: the good, the bad, and the unknown. Cell Metab. 33, 1293-1306. https://doi.org/10.1016/j.cmet.2021.06.006
- Hannun, Y. A. and Obeid, L. M. (2018) Author correction: sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 673. https://doi.org/10.1038/s41580-018-0046-6
- Huang, B. Y., Zeng, Y., Li, Y. J., Huang, X. J., Hu, N., Yao, N., Chen, M. F., Yang, Z. G., Chen, Z. S., Zhang, D. M. and Zeng, C. Q. (2017) Uncaria alkaloids reverse ABCB1-mediated cancer multidrug resistance. Int. J. Oncol. 51, 257-268. https://doi.org/10.3892/ijo.2017.4005
- Jairajpuri, D. S., Mohammad, T., Adhikari, K., Gupta, P., Hasan, G. M., Alajmi, M. F., Rehman, M. T., Hussain, A. and Hassan, M. I. (2020) Identification of sphingosine kinase-1 inhibitors from bioactive natural products targeting cancer therapy. ACS Omega 5, 14720-14729. https://doi.org/10.1021/acsomega.0c01511
- Kushida, H., Matsumoto, T. and Ikarashi, Y. (2021) Properties, pharmacology, and pharmacokinetics of active indole and oxindole alkaloids in uncaria hook. Front. Pharmacol. 12, 688670. https://doi.org/10.3389/fphar.2021.688670
- Li, Q. F., Huang, W. R., Duan, H. F., Wang, H., Wu, C. T. and Wang, L. S. (2007) Sphingosine kinase-1 mediates BCR/ABL-induced upregulation of Mcl-1 in chronic myeloid leukemia cells. Oncogene 26, 7904-7908. https://doi.org/10.1038/sj.onc.1210587
- Lion, T. (2011) SP 108 resistance to tyrosine kinase inhibitors in chronic myeloid leukemia. Eur. J. Cancer 47, S3. https://doi.org/10.1016/S0959-8049(11)72600-4
- Liu, H. W., Chen, Q., Lu, D., Pang, X., Yin, S. S., Wang, K. L., Wang, R., Yang, S. S., Zhang, Y., Qiu, Y. L., Wang, T. and Yu, H. Y. (2020) HTBPI, an active phenanthroindolizidine alkaloid, inhibits liver tumorigenesis by targeting Akt. FASEB J. 34, 12255-12268. https://doi.org/10.1096/fj.202000254R
- Lupino, L., Perry, T., Margielewska, S., Hollows, R., Ibrahim, M., Care, M., Allegood, J., Tooze, R., Sabbadini, R., Reynolds, G., Bicknell, R., Rudzki, Z., Lin, Hock. Y., Zanetto, U., Wei, W., Simmons, W., Spiegel, S., Woodman, C. B. J., Rowe, M., Vrzalikova, K. and Murray, P. G. (2019) Sphingosine-1-phosphate signalling drives an angiogenic transcriptional programme in diffuse large B cell lymphoma. Leukemia 33, 2884-2897. https://doi.org/10.1038/s41375-019-0478-9
- Mohd Sairazi, N. S. and Sirajudeen, K. N. S. (2020) Natural products and their bioactive compounds: neuroprotective potentials against neurodegenerative diseases. Evid. Based Complement. Alternat. Med. 2020, 6565396.
- Mojtahedi, H., Yazdanpanah, N. and Rezaei, N. (2021) Chronic myeloid leukemia stem cells: targeting therapeutic implications. Stem Cell Res. Ther. 12, 603. https://doi.org/10.1186/s13287-021-02659-1
- Osman, A. E. G. and Deininger, M. W. (2021) Chronic myeloid leukemia: modern therapies, current challenges and future directions. Blood Rev. 49, 100825. https://doi.org/10.1016/j.blre.2021.100825
- Patmanathan, S. N., Wang, W., Yap, L. F., Herr, D. R. and Paterson, I. C. (2017) Mechanisms of sphingosine 1-phosphate receptor signalling in cancer. Cell. Signal. 34, 66-75. https://doi.org/10.1016/j.cellsig.2017.03.002
- Pitman, M. R. and Pitson, S. M. (2010) Inhibitors of the sphingosine kinase pathway as potential therapeutics. Curr. Cancer Drug Targets 10, 354-367. https://doi.org/10.2174/156800910791208599
- Pitson, S. M., Moretti, P. A. B., Zebol, J. R., Lynn, H. E., Xia, P., Vadas, M. A. and Wattenberg, B. W. (2003) Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J. 22, 5491-5500. https://doi.org/10.1093/emboj/cdg540
- Qi, W., Yue, S. J., Sun, J. H., Simpkins, J. W., Zhang, L. and Yuan, D. (2014) Alkaloids from the hook-bearing branch of Uncaria rhynchophylla and their neuroprotective effects against glutamate-induced HT22 cell death. J. Asian Nat. Prod. Res. 16, 876-883. https://doi.org/10.1080/10286020.2014.918109
- Ren, S. Y., Xin, C. Y., Pfeilschifter, J. and Huwiler, A. (2010) A novel mode of action of the putative sphingosine kinase inhibitor 2-(phydroxyanilino)-4-(p-chlorophenyl) thiazole (SKI II): induction of lysosomal sphingosine kinase 1 degradation. Cell. Physiol. Biochem. 26, 97-104. https://doi.org/10.1159/000315110
- Sukocheva, O. A., Furuya, H., Ng, M. L., Friedemann, M., Menschikowski, M., Tarasov, V. V., Chubarev, V. N., Klochkov, S. G., Neganova, M. E., Mangoni, A. A., Aliev, G. and Bishayee, A. (2020) Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: a novel therapeutic target. Pharmacol. Ther. 207, 107464. https://doi.org/10.1016/j.pharmthera.2019.107464
- Velazquez, F. N., Hernandez-Corbacho, M., Trayssac, M., Stith, J. L., Bonica, J., Jean, B., Pulkoski-Gross, M. J., Carroll, B. L., Salama, M. F., Hannun, Y. A. and Snider, A. J. (2021) Bioactive sphingolipids: advancements and contributions from the laboratory of Dr. Lina M. Obeid. Cell. Signal. 79, 109875. https://doi.org/10.1016/j.cellsig.2020.109875
- Wilson, B. A. P., Thornburg, C. C., Henrich, C. J., Grkovic, T. and O'Keefe, B. R. (2020) Creating and screening natural product libraries. Nat. Prod. Rep. 37, 893-918. https://doi.org/10.1039/C9NP00068B
- Yin, S. S., Qiu, Y. L., Jin, C. Y., Wang, R., Wu, S., Liu, H. W., Koo, S., Han, L. F., Zhang, Y., Gao, X. M., Pang, X., Wang, T. and Yu, H. Y. (2019) 7-Deoxynarciclasine shows promising antitumor efficacy by targeting Akt against hepatocellular carcinoma. Int. J. Cancer 145, 3334-3346. https://doi.org/10.1002/ijc.32395
- Yin, S. S., Yang, S. S., Luo, Y. M., Lu, J., Hu, G. Y., Wang, K. L., Shao, Y. Y., Zhou, S. Y., Koo, S., Qiu, Y. L., Wang, T. and Yu, H. Y. (2021) Cyclin-dependent kinase 1 as a potential target for lycorine against hepatocellular carcinoma. Biochem. Pharmacol. 193, 114806. https://doi.org/10.1016/j.bcp.2021.114806
- Yu, H. Y., Yin, S. S., Zhou, S. Y., Shao, Y. Y., Sun, J. C., Pang, X., Han, L. F., Zhang, Y., Gao, X. M., Jin, C. Y., Qiu, Y. L. and Wang, T. (2018) Magnolin promotes autophagy and cell cycle arrest via blocking LIF/Stat3/Mcl-1 axis in human colorectal cancers. Cell Death Dis. 9, 702 https://doi.org/10.1038/s41419-018-0660-4
- Zhang, L., Chen, T., Dou, Y. H., Zhang, S. L., Liu, H. Y., Khishignyam, T., Li, X. F., Zuo, D., Zhang, Z., Jin, M. H., Wang, R., Qiu, Y. L., Zhong, Y. X. and Kong, D. X. (2019) Atorvastatin exerts antileukemia activity via inhibiting mevalonate-YAP axis in K562 and HL60 cells. Front. Oncol. 9, 1032. https://doi.org/10.3389/fonc.2019.01032
- Zheng, X. J., Li, W., Ren, L. W., Liu, J. Y., Pang, X. C., Chen, X. P., Kang, D., Wang, J. H. and Du, G. H. (2019) The sphingosine kinase-1/sphingosine-1-phosphate axis in cancer: potential target for anticancer therapy. Pharmacol. Ther. 195, 85-99. https://doi.org/10.1016/j.pharmthera.2018.10.011
- Zhou, Q. X., Chen, Y. L., Chen, X., Zhao, W. N., Zhong, Y. X., Wang, R., Jin, M. H., Qiu, Y. L. and Kong, D. X. (2016) In vitro antileukemia activity of ZSTK474 on K562 and multidrug resistant K562/A02 cells. Int. J. Biol. Sci. 12, 631-638. https://doi.org/10.7150/ijbs.14878