DOI QR코드

DOI QR Code

A Study on Improved Open-Circuit Voltage Characteristics Through Bi-Layer Structure in Heterojunction Solar Cells

이종접합 태양전지에서의 Bi-Layer 구조를 통한 향상된 개방전압특성에 대한 고찰

  • Kim, Hongrae (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Jeong, Sungjin (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Cho, Jaewoong (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Kim, Sungheon (Interdisciplinary Program in Photovoltaic System Engineering, Sungkyunkwan University) ;
  • Han, Seungyong (Interdisciplinary Program in Photovoltaic System Engineering, Sungkyunkwan University) ;
  • Dhungel, Suresh Kumar (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
  • 김홍래 (성균관대학교 전자전기컴퓨터공학과) ;
  • 정성진 (성균관대학교 전자전기컴퓨터공학과) ;
  • 조재웅 (성균관대학교 전자전기컴퓨터공학과) ;
  • 김성헌 (성균관대학교 태양광시스템협동과정) ;
  • 한승용 (성균관대학교 태양광시스템협동과정) ;
  • 수레쉬 쿠마르 듄겔 (성균관대학교 정보통신대학) ;
  • 이준신 (성균관대학교 정보통신대학)
  • Received : 2022.09.01
  • Accepted : 2022.09.03
  • Published : 2022.11.01

Abstract

Passivation quality is mainly governed by epitaxial growth of crystalline silicon wafer surface. Void-rich intrinsic a-Si:H interfacial layer could offer higher resistivity of the c-Si surface and hence a better device efficiency as well. To reduce the resistivity of the contact area, a modification of void-rich intrinsic layer of a-Si:H towards more ordered state with a higher density is adopted by adapting its thickness and reducing its series resistance significantly, but it slightly decreases passivation quality. Higher resistance is not dominated by asymmetric effects like different band offsets for electrons or holes. In this study, multilayer of intrinsic a-Si:H layers were used. The first one with a void-rich was a-Si:H(I1) and the next one a-SiOx:H(I2) were used, where a-SiOx:H(I2) had relatively larger band gap of ~2.07 eV than that of a-Si:H (I1). Using a-SiOx:H as I2 layer was expected to increase transparency, which could lead to an easy carrier transport. Also, higher implied voltage than the conventional structure was expected. This means that the a-SiOx:H could be a promising material for a high-quality passivation of c-Si. In addition, the i-a-SiOx:H microstructure can help the carrier transportation through tunneling and thermal emission.

Keywords

Acknowledgement

This research was supported by grants from the New & Renewable Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Korean Ministry of Trade, Industry and Energy (MOTIE) (Project No. 20213030010240). 본 논문은 성균관대학교 및 교육부, 한국연구재단의 4단계 두뇌한국21 사업 대학원혁신으로 지원된 연구임.

References

  1. M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, IEEE J. Photovolt., 4, 96 (2014). [Doi: https://doi.org/10.1109/JPHOTOV.2013.2282737]
  2. J. P. Seif, A. Descoeudres, M. Filipic, F. Smole, M. Topic, Z. C. Holman, S. D. Wolf, and C. Ballif, J. Appl. Phys., 115, 024502 (2014). [Doi: https://doi.org/10.1063/1.4861404]
  3. Y. Tao and A. Rohatgi, Nanostructured Solar Cells, (Tech, 2017) pp. 93-115. [Doi: https://doi.org/10.5772/65023]
  4. J. Fang, Z. Chen, G. Hou, F. Wang, X. Chen, C. Wei, G. Wang, J. Sun, D. Zhang, Y. Zhao, and X. Zhang, Sol. Energy Mater. Sol. Cells., 136, 172 (2015). [Doi: https://doi.org/10.1016/j.solmat.2015.01.014]
  5. T. Ruan, M. Qu, J. Wang, Y. He, X. Xu, C. Yu, Y. Zhang, and H. Yan, J. Mater. Sci.: Mater. Electron., 30, 13330 (2019). [Doi: https://doi.org/10.1007/s10854-019-01700-7]
  6. J. Linke, M. A. Fazio, D. Cavalcoli, and B. Terheiden, Sol. Energy Mater. Sol. Cells, 187, 104 (2018). [Doi: https://doi.org/10.1016/j.solmat.2018.07.024]
  7. D. Deligiannis, J. van Vliet, R. Vasudevan, R.A.C.M.M. van Swaaij, and M. Zeman, J. Appl. Phys., 121, 085306 (2017). [Doi: https://doi.org/10.1063/1.4977242]
  8. K. Carstens and M. Dahlinger, J. Appl. Phys., 119, 185303 (2016). [Doi: https://doi.org/10.1063/1.4948945]
  9. D. P. Pham, S. Lee, Y. Kim, and J. Yi, J. Phys. Chem. Solids, 154, 110059 (2021). [Doi: https://doi.org/10.1016/j.jpcs.2021.110059]
  10. G. Ahmad, S. Mandal, A. K. Barua, T. K. Bhattacharya, and J. N. Roy, IEEE J. Photovolt., 7, 414 (2017). [Doi: https://doi.org/10.1109/JPHOTOV.2016.2642644]
  11. J. Shi and Z. C. Holman, 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), (Washington, DC, USA, 2017) pp. 1820-1823. [Doi: https://doi.org/10.1109/PVSC.2017.8366193]
  12. J. Wang, X. Ru, T. Ruan, Y. Hu, Y. Zhang, and H. Yan, J. Mater. Sci.: Mater. Electron., 32, 25327 (2021). [Doi: https://doi.org/10.1007/s10854-021-06991-3]
  13. M. Rana, C. Banerjee, and P. Chowdhury, Appl. Phys. A, 127, 192 (2021). [Doi: https://doi.org/10.1007/s00339-021-04322-1]
  14. Y. Yang, W. Liu, L. Zhang, S. Huang, X. Li, K. Jiang, Z. Li, Z. Yan, S. Lan, X. Wu, Z. Ma, Y. Zhou, and Z. Liu, Mater. Lett., 309, 131360 (2022). [Doi: https://doi.org/10.1016/j.matlet.2021.131360]
  15. W. Long, S. Yin, F. Peng, M. Yang, L. Fang, X. Ru, M. Qu, H. Lin, and X. Xu, Sol. Energy Mater. Sol. Cells., 231, 111291 (2021). [Doi: https://doi.org/10.1016/j.solmat.2021.111291]
  16. M. Z. Burrows, U. K. Das, R. L. Opila, S. De Wolf, and R. W. Birkmire, "Role of hydrogen bonding environment in a-Si:H films for c-Si surface passivation," J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., 26, 683 (2008). [Doi: https://doi.org/10.1116/1.2897929]
  17. M. Sharma, J. Panigrahi, and V. K. Komarala, Nanoscale Adv., 3, 3373 (2021). [Doi: https://doi.org/10.1039/D0NA00791A]