References
- Al-atroush, M.E., Hefny, A., Zaghloul, Y. and Sorour, T. (2020), "Behavior of a large diameter bored pile in drained and undrained conditions: Comparative analysis", Geosci., 10(7), 261. https://doi.org/10.3390/GEOSCIENCES10070261.
- Armaghani, D.J., Asteris,P.G., Fatemi, S.A., Hasanipanah, M., Tarinejad, R., Rashid, A.S.A. and Huynh, V.V. (2020), "On the use of neuro-swarm system to forecast the pile settlement", Appl. Sci., 10(6), 1904. https://doi.org/10.3390/APP10061904.
- Armaghani, D.J., Harandizadeh, H., Momeni, E., Maizir, H. and Zhou, J. (2021), "An optimized system of GMDH-ANFIS predictive model by ICA for estimating pile bearing capacity", Artif. Intell. Rev., https://doi.org/10.1007/s10462-021-10065-5.
- Armaghani, D.J., Mirzaei, F., Shariati, M., Trung, N.T., Shariati, M. and Trnavac, D. (2020), "Hybrid ann-based techniques in predicting cohesion of sandy-soil combined with fiber", Geomech. Eng., 20(3), 191-205. https://doi.org/10.12989/gae.2020.20.3.191.
- Atsalakis, G.S., Atsalaki, I.G. and Zopounidis, C. (2018), "Forecasting the success of a new tourism service by a neuro-fuzzy technique", Eur. J. Operation. Res., 268(2), 716-727. https://doi.org/10.1016/J.EJOR.2018.01.044.
- Bai, Y., Nardi, D.C., Zhou, X., Picon, R.A. and Florez-Lopez, J. (2021), "A new comprehensive model of damage for flexural subassemblies prone to fatigue", Comput. Struct., 256. https://doi.org/10.1016/j.compstruc.2021.106639.
- Bardhan, A., Kardani, N., GuhaRay, A., Burman, A., Samui, P. and Zhang, Y. (2021), "Hybrid ensemble soft computing approach for predicting penetration rate of tunnel boring machine in a rock environment", J. Rock Mech. Geotech. Eng., 13(6), 1398-1412. https://doi.org/10.1016/j.jrmge.2021.06.015.
- Basarkar, S.S. (2011), "High strain dynamic pile testing practices in India-favorable situations and correlation studies", in Proceedings of Indian Geotechnical Conference Kochi (Paper No. Q-303).
- Bharti, J.P., Mishra, P., Moorthy, U., Sathishkumar, V. E., Cho, Y. and Samui, P. (2021), "Slope stability analysis using Rf, Gbm, Cart, Bt and Xgboost", Geotech. Geol. Eng., 39(5), 3741-3752. https://doi.org/10.1007/S10706-021-01721-2/FIGURES/6.
- Biswas, R., Bardhan, A., Samui, P., Rai, B., Nayak, S. and Armaghani, D.J. (2021), "Efficient soft computing techniques for the prediction of compressive strength of geopolymer concrete", Comput. Concrete, 28(2), 221-232. https://doi.org/10.12989/cac.2021.28.2.221.
- Biswas, R., Rai, B., Samui, P. and Roy, S.S. (2020), "Estimating Concrete Compressive Strength Using MARS, LSSVM and GP", Eng. J., 24(2), 41-52. https://doi.org/10.4186/ej.2020.24.2.41.
- Biswas, R., Samui, P. and Rai, B. (2019), "Determination of compressive strength using relevance vector machine and emotional neural network", Asian J. Civil Eng., 20(8), 1109-1018. https://doi.org/10.1007/s42107-019-00171-9.
- Bradshaw, A.S. and Baxter, C.D.P. (2006), Design and Construction of Driven Pile Foundations - Lessons Learned on the Central Artery / Tunnel Project.
- Chaallal, O., Arockiasamy, M. and Godat, A. (2015), "Field test performance of buried flexible pipes under live truck loads", J. Perform. Constr. Fac., 29(5), 04014124. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000624.
- Chai, T. and Draxler, R.R. (2014), "Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)? -Arguments against avoiding RMSE in the literature", Geosci. Model Development, 7(3), 1247-1250. https://doi.org/10.5194/gmd-7-1247-2014.
- Charlie, W.A., Allard, D.J. and Doehring, D.O. (2009), "Pile settlement and uplift in liquefying sand deposit", Geotech. Test. J., 32(2), 147-156. https://doi.org/10.1520/GTJ101636.
- Chen, F.X., Zhong, Y.C., Gao, X.Y., Jin, Z.Q., Wang, E.D., Zhu, F.P., Shao, X.X. and He, X.Y. (2021), "Non-uniform model of relationship between surface strain and rust expansion force of reinforced concrete", Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-88146-2.
- Chen, F.X., Jin, Z., Wang, E.D., Wang, L., Jiang, Y., Guo, P., Gao, S. and He, X.Y. (2021), "Relationship model between surface strain of concrete and expansion force of reinforcement rust", Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-83376-w.
- Fatehnia, M. and Amirinia, G. (2018), "A review of genetic programming and artificial neural network applications in pile foundations", Int. J. Geo-Eng., 9(1), 1-20. https://doi.org/10.1186/S40703-017-0067-6/TABLES/8.
- Fellenius, B.H. (1999), Using the Pile Driving Analyzer.
- Fishman, K.L., Richards, Jr. R. and Yao, D. (2003), "Inclination factors for seismic bearing capacity", J. Geotech. Geoenviron. Eng., 129(9), 861-865. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:9(861).
- Gabrielaitis, L., Papinigis, V. and Zarzoju, G. (2013), "Estimation of settlements of bored piles foundation", Struct. Techniques, 287-293.
- Gaitonde, V.N. and Karnik, S.R. (2012), "Minimizing burr size in drilling using Artificial Neural Network (ANN)-Particle Swarm Optimization (PSO) approach", J. Intell. Manufact., 23(5), 1783-1793. https://doi.org/10.1007/s10845-010-0481-5.
- Ghani, S., Kumari, S. and Bardhan, A. (2021), "A novel liquefaction study for fine-grained soil using PCA-based hybrid soft computing models." Sadhana - Academy Proceedings in Engineering Sciences 46(3), 1-17. https://doi.org/10.1007/S12046-021-01640-1/TABLES/7.
- Guo, Y., Yang, Y., Kong, Z. and He, J. (2022), "Development of similar materials for liquid-solid coupling and its application in water outburst and mud outburst model test of deep tunnel", Geofluids, 2022, 1-12. https://doi.org/10.1155/2022/8784398.
- Huang, H., Huang, M., Zhang, W. and Yang, S. (2021), "Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases", Struct. Infrastruct. Eng., 17(9), 1210-1227. https://doi.org/10.1080/15732479.2020.1801768.
- Kalinli, A., Acar, M.C. and Gunduz, Z. (2011), "New approaches to determine the ultimate bearing capacity of shallow foundations based on artificial neural networks and ant colony optimization", Eng. Geol., 117(1-2), 29-38. https://doi.org/10.1016/J.ENGGEO.2010.10.002.
- Kardani, N., Bardhan, A, and Samui, P., Zhou, M.N.A. and Armaghani, D.J. (2021), "A novel technique based on the improved firefly algorithm coupled with Extreme Learning Machine (ELM-IFF) for predicting the thermal conductivity of soil", Eng. with Comput., https://doi.org/10.1007/s00366-021-01329-3.
- Kardani, N., Pijush Samui, P.T., Kim, D. and Zhou, A. (2021), "Smart phase behavior modeling of asphaltene precipitation using advanced computational frameworks: ENN, GMDH, and MPMR", Petroleum Sci. Technol., 39(19-20), 804-825. https://doi.org/10.1080/10916466.2021.1974882.
- Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of the IEEE International Conference on Neural Networks - Conference.
- Kiefa, M.A.A. (1998), "General regression neural networks for driven piles in cohesionless soils", J. Geotech. Geoenviron. Eng., 124(12), 11771185. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1177).
- Kulhawy, F.H. (1993), "On the evaluation of static soil properties. in stability and performance of slopes and embankments II",, ASCE, 95-115.
- Kumar, M. and Samui, P. (2019), "Reliability analysis of pile foundation using ELM and MARS", Geotech. Geol. Eng., 37(4). https://doi.org/10.1007/s10706-018-00777-x.
- Kumar, M., Samui, P., Kumar, D. and Zhang. W. (2021), "Reliability analysis of settlement of pile group", Innov. Infrastruct. Solutions, 6(1). https://doi.org/10.1007/s41062-020-00382-z.
- Li, W., Li, B., Guo, H., Fang, Y., Qiao, F. and Zhou, S. (2020), "The ECG signal classification based on ensemble learning of PSO-ELM algorithm", Neural Network World, 30(4), 265-279. https://doi.org/10.14311/NNW.2020.30.018.
- Lin, Z., Wang, H. and Li, S. (2022), "Pavement anomaly detection based on transformer and self-supervised learning", Automat. Constr., 143, 104544. https://doi.org/10.1016/j.autcon.2022.104544.
- Liu, L.L., Yang, C. and Wang, X.M. (2021), "Landslide susceptibility assessment using feature selection based machine learning models", Geomech. Eng., 25(1), 1-16. https://doi.org/10.12989/gae.2021.25.1.001.
- Liu, L., Moayedi, H., Rashid, A.S.A., Rahman, S.S.A. and Nguyen, H. (2020), "Optimizing an ANN model with Genetic Algorithm (GA) predicting load-settlement behaviours of Eco-Friendly Raft-Pile Foundation (ERP) system", Eng. with Comput., https://doi.org/10.1007/s00366-019-00767-4.
- Long, M. (2007), "Comparing dynamic and static test results of bored piles", Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 160(1), 43-49. https://doi.org/10.1680/geng.2007.160.1.43.
- Moayedi, H., Raftari, M., Sharifi, A., Jusoh, W.A.W. and Rashid, A.S.A. (2020), "Optimization of ANFIS with GA and PSO estimating α ratio in driven piles", Eng. with Comput., 36(1), 227-238. https://doi.org/10.1007/S00366-018-00694-W/FIGURES/11.
- Moayedi, H. and Rezaei, A. (2021), "The feasibility of PSO- ANFIS in estimating bearing capacity of strip foundations rested on cohesionless slope", Neural Comput. Appl., 33(9), 4165-4177. https://doi.org/10.1007/s00521-020-05231-9.
- Mohabbi, M., Ahmet, Y. and Ramazan, B. (2017), "Application of adaptive neuro-fuzzy technique and regression models to predict the compressive strength of geopolymer composites", Neural Comput. Appl., 28(6), 1453-61. https://doi.org/10.1007/s00521-015-2159-6.
- Mohamed, F.M.O., Vanapalli, S.K. and Saatcioglu, M. (2013), "Generalized schmertmann equation for settlement estimation of shallow footings in saturated and unsaturated sands", Geomech. Eng., 5(4), 343-362. https://doi.org/10.12989/gae.2013.5.4.343.
- Momeni, E., Dowlatshahi, M.B., Omidinasab, F., Maizir, H. and Armaghani, D.J. (2020), "Gaussian process regression technique to estimate the pile bearing capacity", Arabian J. Sci. Eng., https://doi.org/10.1007/s13369-020-04683-4.
- Murlidhar, B.R, Sinha,R.K., Mohamad, E.T., Sonkar, R. and Khorami, M. (2020), "The effects of particle swarm optimisation and genetic algorithm on ANN results in predicting pile bearing capacity", Int. J. Hydromechatron., 3(1), 69. https://doi.org/10.1504/ijhm.2020.105484.
- Nash, J.E. and Sutcliffe, J.V. (1970), "River flow forecasting through conceptual models Part I - A discussion of principles." J. Hydrology, 10(3), 282-290. https://doi.org/10.1016/0022-1694(70)90255-6.
- Nayak, N.V., Kanhere, D.K. and Vaidya, R. (2000), "Static and high strain dynamic test co-relation studies on cast-in-situ concrete bored piles", Proceedings of the 25th Annual Members' Conference and 8th Int. Conf. and Exposition, Deep Foundation Institute.
- Park, D. and Rilett, L. (1999), "Forecasting freeway link travel times with a multilayer feedforward neural network", Comput. Aid. Civ. Infrastruct. Eng., 14(5), 357-367. https://doi.org/10.1111/0885-9507.00154
- Park, H., Lee, S.R. and Jee, S.H. (2010), "Bearing capacity of surface footing on soft clay underlying stiff nonhomogeneous desiccated crust", Int. J. Offshore Polar Eng., 20(3).
- Pezeshki, Z. and Mazinani, S.M. (2019), "Comparison of artificial neural networks, fuzzy logic and neuro fuzzy for predicting optimization of building thermal consumption: A survey", Artif. Intell. Rev., 52(1), 495-525. https://doi.org/10.1007/S10462-018-9630-6/FIGURES/10.
- Pradeep, T., Bardhan, A., Burman, A. and Samui, P. (2021), "Rock strain prediction using deep neural network and hybrid models of ANFIS and meta-heuristic optimization algorithms", Infrastructures, 6(9), 129. https://doi.org/10.3390/infrastructures6090129
- Pradeep, T., Bardhan, A. and Samui, P. (2022), "Prediction of rock strain using soft computing framework", Innov. Infrastruct. Solutions, 7(1), 37. https://doi.org/10.1007/s41062-021-00631-9.
- Rausche, F., Goble, G.G. and Likins, Jr. G.E. (2004), "Dynamic determination of pile capacity", Current Practices and Future Trends in Deep Foundations. Reston, VA: American Society of Civil Engineers.
- Rausche, F., Goble, G.G. and Likins, G.E. (1985), "Dynamic determination of pile capacity", J. Geotech. Eng., 111(3), 367-383. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(367).
- Ray, R., Kumar, D., Samui, P., Roy, L.B., Goh, A.T.C. and Zhang, W. (2021), "Application of soft computing techniques for shallow foundation reliability in geotechnical engineering", Geosci. Frontiers, 12(1), 375-383. https://doi.org/10.1016/j.gsf.2020.05.003.
- Rybak, J. and Krol, M. (2018), "Limitations and risk related to static capacity testing of piles-'Unfortunate Case', studies", P. 02006 in MATEC Web of Conferences. Vol. 146, edited by I. Juhasova Senitkova. EDP Sciences.
- Sakr, M. (2013), "Comparison between high strain dynamic and static load tests of helical piles in cohesive soils", Soil Dyn. Earthq. Eng., 54, 20-30. https://doi.org/10.1016/j.soildyn.2013.07.010.
- Shan, Y., Zhao, J., Tong, H., Yuan, J., Lei, D. and Li, Y. (2022). "Effects of activated carbon on liquefaction resistance of calcareous sand treated with microbially induced calcium carbonate precipitation", Soil Dyn. Earthq. Eng., 161. https://doi.org/10.1016/j.soildyn.2022.107419.
- Shi, L., Xiao, X., Wang, X., Liang, H. and Wang. D. (2022), "Mesostructural characteristics and evaluation of asphalt mixture contact chain complex networks", Constr. Build. Mater., 340. https://doi.org/10.1016/j.conbuildmat.2022.127753.
- Sieffert, J.G. and Bay-Gress, C.H. (2000), "Comparison of european bearing capacity calculation methods for shallow foundations", Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 143(2), 65-74. https://doi.org/10.1680/geng.2000.143.2.65.
- Smith, E.A.L. (2002), "Pile-driving analysis by the wave equation", in Geotechnical Special Publication.
- Srinivasulu, S. and Jain, A. (2006), "A comparative analysis of training methods for artificial neural network rainfall-runoff models", Appl. Soft Comput., 6(3), 295-306. doi: 10.1016/j.asoc.2005.02.002.
- Sundaram, R. and Gupta, S. (2016), "Back-analysis of pile load test results-a case study", ISRM India J.-Half Yearly Tech. J. Indian National Group of ISRM, 5(2), 30-35.
- Taylor, K.E. (2001), "Summarizing multiple aspects of model performance in a single diagram", J. Geophys. Res. Atmosph., 106(7), 7183-7192. https://doi.org/10.1029/2000JD900719.
- Terzaghi, K. (1929), "Effect of minor geologic details on the safety of dams", Amer. Inst. Min. and Met. Engrs. Tech. Publ., 215, 31-44.
- Tu, J.V. (1996), "Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes", J. Clinical Epidemiol., 49(11), 1225-1231. https://doi.org/10.1016/S0895-4356(96)00002-9.
- Wang, C., Zhou, S., Wang, B., P. Guo-Geomechanics and, and Undefined 2016. (2016), "Settlement behavior and controlling effectiveness of two types of rigid pile structure embankments in high-speed railways", Geomech. Eng., 11, 847-865. https://doi.org/10.12989/gae.2016.11.6.847
- Wang, X., Yang, Y., Yang, R. and Liu., P. (2022), "Experimental analysis of bearing capacity of basalt fiber reinforced concrete short columns under axial compression", Coatings, 12(5). https://doi.org/10.3390/coatings12050654.
- Wei, J., Xie, Z., Zhang, W., Luo, X., Yang, Y. and Chen, B. (2021), "Experimental study on circular steel tube-confined reinforced UHPC columns under axial loading", Eng. Struct., 230. https://doi.org/10.1016/j.engstruct.2020.111599.
- Wei, W., Xie, H., Mao, X. and Hu, H. (2019), "Prediction of bearing capacity of composite foundation of vibrating gravel pile based on RBF neural network", Proceedings of the IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering, ISKE 2019. https://doi.org/10.1109/ISKE47853.2019.9170467.
- Wu, C., Hong, L., Wang,L., Zhang, R., Pijush, S. and Zhang, W. (2022), "Prediction of wall deflection induced by braced excavation in spatially variable soils via convolutional neural network", Gondwana Res., https://doi.org/10.1016/j.gr.2022.06.011.
- Wu, Z., Xu, J., Chen, H., Shao, L., Zhou, X. and Wang, S. (2022), "Shear strength and mesoscopic characteristics of basalt fiber- reinforced loess after dry-wet cycles", J. Mater. Civil Eng., 34(6). https://doi.org/10.1061/(asce)mt.1943-5533.0004225.
- Xie, W., Li, X., Jian, W., Yang, Y., Liu, H., Robledo, L.F. and Nie, W. (2021), "A novel hybrid method for landslide susceptibility mapping-based geodetector and machine learning cluster: A case of Xiaojin County, China", ISPRS International J. Geo-Inform., 10(2), https://doi.org/10.3390/ijgi10020093.
- Xie, W., Nie, W., Saffari, P., Robledo, L.F., Descote, P.Y. and Jian, W. (2021), "Landslide hazard assessment based on bayesian optimization-support vector machine in Nanping City, China", Nat. Hazards, 109(1), 931-948. https://doi.org/10.1007/s11069-021-04862-y.
- Xu, J., Zhou, L., Hu, K., Li, Y., Zhou, X. and Wang, S. (2022), "Influence of wet-dry cycles on uniaxial compression behavior of fissured loess disturbed by vibratory loads", J. Civil Eng. - KSCE, 26(5), 2139-2152. https://doi.org/10.1007/s12205-022-1593-0.
- Yu, C., Koopialipoor, M., Murlidhar, B.R., Mohammed, A.S., Armaghani, D.J., Mohamad, E.T. and Wang, Z. (2021), "Optimal ELM-harris hawks optimization and ELM- grasshopper optimization models to forecast peak particle velocity resulting from mine blasting", Nat. Resour. Res., 30(3), 2647-2662. https://doi.org/10.1007/S11053-021-09826-4/FIGURES/9.
- Yuan, J., Lei, D., Shan, Y., Tong, H., Fang, X. and Zhao, J. (2022), "Direct shear creep characteristics of sand treated with microbial-Induced calcite precipitation", Int. J. Civil Eng., 20(7), 763-777. https://doi.org/10.1007/s40999-021-00696-8.
- Zeng, J., Asteris, P.G., Mamou, A.P., Mohammed, A.S., Golias, E.A., Armaghani, D.J., Faizi, K. and Hasanipanah, M. (2021), "The effectiveness of ensemble-neural network techniques to predict peak uplift resistance of buried pipes in reinforced sand", Appl. Sci., 11(3), 908. https://doi.org/10.3390/APP11030908.
- Zeng, J., Roy, B., Kumar, D., Mohammed, A.S., Armaghani, D.J., Zhou, J. and Mohamad, E.T. (2021), "Proposing several hybrid PSO-extreme learning machine techniques to predict TBM performance", Eng. with Comput., 1, 1-17. https://doi.org/10.1007/S00366-020-01225-2/FIGURES/11.
- Zhang, C., Ali, A. and Sun, L. (2021), "Investigation on low-cost friction-based isolation systems for masonry building structures: Experimental and numerical studies", Eng. Struct., 243. https://doi.org/10.1016/j.engstruct.2021.112645.
- Zhang, W., Liu, X. and Huang, Y. (2022), "Reliability-based analysis of the flexural strength of concrete beams reinforced with hybrid BFRP and steel rebars", Archiv. Civ. Mech. Eng., https://doi.org/10.1007/s43452-022-00493-7.
- Zhang, W., Gu, X., Tang, L., Yin, Y., Liu, D. and Zhang, Y. (2022), "Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge", Gondwana Research.
- Zhang, W. and Phoon, K.K. (2022), "Editorial for advances and applications of deep learning and soft computing in geotechnical underground engineering", J. Rock Mech. Geotech. Eng..
- Zhou, Xuhong, Yongtao Bai, Deborah C. Nardi, Yuqian Wang, Yuhang Wang, Zhanfang Liu, Ricardo A. Picon, and Julio Florez-Lopez. (2022), "Damage evolution modeling for steel structures subjected to combined high cycle fatigue and high-intensity dynamic loadings", Int. J. Struct. Stab. Dyn., 22(3). https://doi.org/10.1142/S0219455422400120.
- Zhu, J. (2019), "Study on deformation law of foundation pit by multifractal detrended fluctuation analysis and extreme learning machine improved by particle swarm optimization", J. Yangtze River Scientif. Res. Inst., 36(3), 53. https://doi.org/10.11988/CKYYB.20170946.