DOI QR코드

DOI QR Code

Comparison of sodium permanganate and sodium hypochlorite on algae-containing water: algae cell integrity and byproduct formation

조류가 발생한 수질에 과망간산나트륨과 차아염소산나트륨이 세포 손상도 및 부산물 발생에 미치는 영향 비교

  • Yang, Boram (Center for Water Cycle Research, Korea Institute of Science and Technology) ;
  • Hong, Seok Won (Center for Water Cycle Research, Korea Institute of Science and Technology) ;
  • Choi, Jae-Woo (Center for Water Cycle Research, Korea Institute of Science and Technology)
  • 양보람 (한국과학기술연구원 물자원순환연구단) ;
  • 홍석원 (한국과학기술연구원 물자원순환연구단) ;
  • 최재우 (한국과학기술연구원 물자원순환연구단)
  • Received : 2022.07.14
  • Accepted : 2022.09.15
  • Published : 2022.10.15

Abstract

The effect of permanganate oxidation was investigated as water treatment strategy with a focus on comparing the reaction characteristics of NaOCl and sodium permanganate (NaMnO4) in algae (Monoraphidium sp., Micractinium inermum, Microcystis aeruginosa)-contained water. Flow cytometry explained that chlorine exposure easily damaged algae cells. Damaged algae cells release intracellular organic matter, which increases the concentration of organic matter in the water, which is higher than by NaMnO4. The oxidation reaction resulted in the release of toxin (microcystin-LR, MC-LR) in water, and the reaction of algal organic matter with NaOCl resulted in trihalomethanes (THMs) concentration increase. The oxidation results by NaMnO4 significantly improved the concentration reduction of THMs and MC-LR. Therefore, this study suggests that NaMnO4 is effective as a pre-oxidant for reducing algae damage and byproducts in water treatment process.

Keywords

Acknowledgement

이 논문은 대한민국 정부(과학기술정보통신부)의 재원으로 한국연구재단 국민생활안전 긴급대응연구사업의 지원을 받아 수행된 연구입니다 (과제번호: 2021M3E9A1103513).

References

  1. Antoniou, M. G., de la Cruz, A. A. and Dionysiou, D. D. (2005). Cyanotoxins: New Generation of water contaminations, J. Environ. Eng., 131(9), 1239-1243. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:9(1239)
  2. Catherine, Q., Susanna, W., Isidora, E.S., Mark, H., Aurelie, V. and Jean-Francois, H. (2013). A review of current knowledge on toxic benthic freshwater cyanobacteriaecology, toxin production and risk management, Water Res., 47, 5464-5479. https://doi.org/10.1016/j.watres.2013.06.042
  3. Codd G. A., (2000). Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control, Ecol. Eng., 16, 51-60. https://doi.org/10.1016/S0925-8574(00)00089-6
  4. Edzwalds, J.K. (1993). Algae, bubbles, coagulants, and dissolved air flotation, Water Sci. Technol., 27 (10), 67-81. https://doi.org/10.2166/wst.1993.0207
  5. Fang, J., Y., Ma, J., Yang, X. and Shang, C. (2010). Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa, Water Res., 44(6), 1934-1940. https://doi.org/10.1016/j.watres.2009.11.046
  6. Fan, J., Daly, R., Hobson, P., Ho, L. and Brookes, J. (2013). Impact of potassium permanganate on cyanobacterial cell integrity and toxin release and degradation, Chemosphere, 92(5), 529-534. https://doi.org/10.1016/j.chemosphere.2013.03.022
  7. Henderson, R., Parsons, S. A. and Jefferson, B. (2008). The impact of algal properties and pre-oxidation on solid-liquid separation of algae, Water Res., 42(8-9), 1827-1845. https://doi.org/10.1016/j.watres.2007.11.039
  8. Hu, J., Chu, W., Sui, M., Xu, B., Gao, N. and Ding, S. (2018). Comparison of drinking water treatment processes combinations for the minimization of subsequent disinfection by-products formation during chlorination and chloramination, Chem. Eng. J., 335, 352-361. https://doi.org/10.1016/j.cej.2017.10.144
  9. Jeong, B., Oh, M.S., Park, H.M., Park, C., Kim, E.J. and Hong, S.W. (2017) Elimination of microcystin-LR and residual Mn species using permanganate and powdered activated carbon: Oxidation products and pathways, Water Res., 114, 189-199. https://doi.org/10.1016/j.watres.2017.02.043
  10. Laszakovits, J.R. and MacKay, A.A. (2019). Removal of cyanotoxins by potassium permanganate: Incorporating competition from natural water constituents, Water Res., 155, 86-95. https://doi.org/10.1016/j.watres.2019.02.018
  11. Linder, K., Lew, J., Carter, B. and Brauer R. (2006). Avoiding chlorite: chlorine and ClO2 together form fewer DBPs, Opflow 32, 24-26. https://doi.org/10.1002/j.1551-8701.2006.tb01886.x
  12. Naceradska, J., Pivokonsky, M., Pivokonsky, L., Baresova, M., Henderson, R.K., Zamyadi, A. and Janda, V. (2017). The impact of pre-oxidation with potassium permanganate on cyanobacterial organic matter removal by coagulation, Water Res., 114, 42-49. https://doi.org/10.1016/j.watres.2017.02.029
  13. Plummer, J. D. and Edzwald, J. K. (2002). Effects of chlorine and ozone on algal cell properties and removal of algae by coagulation, J. Water Supply: Res. Technol., AQUA 2002, 51(6), 307-318. https://doi.org/10.2166/aqua.2002.0027
  14. Rodriguez, E., Majado, M.E., Meriluoto, J. and Acero, J.L. (2007). Oxidation of microcystins by permanganate: reaction kinetics and implications for water treatment, Water Res., 41(1), 102-110. https://doi.org/10.1016/j.watres.2006.10.004
  15. Shi, X., Bi, R., Yuan, B., Liao, X., Zhou, Z., Li, Fei. And Sun, W. (2019). A comparison of trichloromethane formation from two algae species during two pre-oxidation-coagulation-chlorination processes, Sci. Total Environ., 656, 1063-1070. https://doi.org/10.1016/j.scitotenv.2018.11.461
  16. Taffarel, S.R. and Rubio, J. (2009). On the removal of Mn2+ ions by adsorption onto natural and activated chilean zeolites, Miner. Eng., 22(4), 336-343. https://doi.org/10.1016/j.mineng.2008.09.007
  17. Takaara, T., Sano, D., Masago, Y. and Omura, T., (2010). Surface-retained organic matter of Microcystis aeruginosa inhibiting coagulation with polyaluminum chloride in drinking water treatment, Water Res., 44, 3781-3786. https://doi.org/10.1016/j.watres.2010.04.030
  18. United States Environmental Protection Agency (2014) Cyanobacteria and Cyanotoxins: Information for drinking water systems, Office of Water 4304T EPA-810F11001.
  19. Watson, S.B., Miller, C., Arhonditsis, G., Boyer, G.L., Carmichael, W., Charlton, M.N., Confesor, R., Depew, D.C., Hook, T.O. and Ludsin, S.A. (2016). The re-eutrophication of Lake Erie: harmful algal blooms and hypoxia, Harmful Algae 56, 44-66. https://doi.org/10.1016/j.hal.2016.04.010
  20. Welch, W.A. (1963). Potassium permanganate in water treatment, J. Am. Water Works Assoc., 55(6), 735-741. https://doi.org/10.1002/j.1551-8833.1963.tb01082.x
  21. Xie, P., Ma, J., Fang, J., Guan, Y., Yue, S., Li, X. and Chen L. (2013). Comparison of Permanganate Preoxidation and Preozonation on Algae Containing Water: Cell Integrity, Characteristics, and Chlorinated Disinfection Byproduct Formation, Environ. Sci. Technol., 47, 14051-14061. https://doi.org/10.1021/es4027024
  22. Yang, X., Guo, W. and Lee, W. (2013). Formation of disinfection byproducts upon chlorine dioxide preoxidation followed by chlorination or chloramination of natural organic matter, Chemosphere, 91, 1477-1485. https://doi.org/10.1016/j.chemosphere.2012.12.014
  23. Zhang, H., Dan, Y., Adams, C.D., Shi, H., Ma, Y. and Eichholz, T. (2017). Effect of oxidant demand on the release and degradation of microcystin-LR from Microcystis aeruginosa during oxidation, Chemosphere, 181, 562-568. https://doi.org/10.1016/j.chemosphere.2017.04.120
  24. Zhou, S., Shao, Y., Gao, N., Li, L., Deng J., Zhu, M. and Zhu, S. (2014). Effect of chlorine dioxide on cyanobacterial cell integrity, toxin degradation and disinfection by-product formation, Sci. Total Environ., 482-483, 208-213. https://doi.org/10.1016/j.scitotenv.2014.03.007