DOI QR코드

DOI QR Code

Antioxidant and Antimicrobial Activities of Various Citrus Peels

감귤류 종류에 따른 과피의 산화방지 및 항균 활성

  • Choi, Hyeonjeong (Division of Food Analysis, Jeollabukdo Institute of Health & Environment Research) ;
  • Kim, Yong-Suk (Department of Food Science and Technology, Jeonbuk National University)
  • 최현정 (전라북도보건환경연구원 식품분석과) ;
  • 김용석 (전북대학교 식품공학과)
  • Received : 2022.08.01
  • Accepted : 2022.09.23
  • Published : 2022.10.30

Abstract

To investigate the functional activity of different citrus fruit peels, antioxidant compounds in 70% ethanol extracts of mandarin, lemon, orange, and grapefruit peel powders were identified, and antioxidant and antibacterial activities were quantitated. Mandarin peel contained the highest content of total phenolic compounds and total flavonoid substances (21.46±0.12 mg GAE/g and 11.57±0.05 mg RE/g, respectively). The total phenolic compound content of the three other citrus fruits was 14.16±0.18-18.44±0.07, and their total flavonoid content was 5.51±0.10-7.46±0.09 mg RE/g. DPPH radical scavenging activity was the highest in lemon peel (87.64±0.21%), and mandarin peel displayed the best antioxidant activity with respective ABTS radical scavenging activity and FRAP measurements of 43.20±0.61% and 78.82±1.06 mM TE/g. Grapefruit peel antimicrobial activity increased with treatment time, and was the most potent among the four tested citrus species, inhibiting Staphylococcus aureus by about 4.05 log cycle. These findings demonstrate that mandarin and grapefruit peel can be used to prevent oxidation, improve food storage capabilities, and potentially preserve food quality.

감귤류 종류에 따른 과피의 생리활성을 조사하기 위해 mandarin, lemon, orange, grapefruit 과피 분말을 시료로 하여 70% ethanol 추출물을 제조한 후 산화방지 성분 및 활성과 식중독 세균 억제 활성을 측정하였다. Mandarin 과피는 총 페놀화합물과 총 플라보노이드 물질을 각각 21.46±0.12 mg GAE/g, 11.57±0.05 mg RE/g으로 가장 많이 함유하고 있었다. Mandarin 이외 3종의 감귤류 과피의 총 페놀화합물 함량은 14.16±0.18-18.44±0.07 이었으며, 총 플라보노이드 함량은 5.51±0.10-7.46±0.09 mg RE/g으로 나타났다. 산화방지 활성을 측정한 결과 lemon 과피의 DPPH 라디칼 소거능이 가장 높은 87.64±0.21%를 나타냈으며, ABTS 라디칼 소거능과 FRAP 측정 결과 mandarin 과피가 각각 43.20±0.61%, 78.82±1.06 mM TE/g으로 가장 우수한 산화방지 활성을 가지는 것으로 나타났다. 식중독 세균 억제 활성 시험에서 grapefruit 과피는 처리 시간이 경과함에 따라 억제 활성이 증가했으며 S. aureus를 4.05 log cfu/mL 정도 억제하여 4종의 감귤류 중 식중독 세균 억제 활성이 가장 뛰어났다. 본 연구 결과에 따라, 감귤류 중 mandarin과 grapefruit 과피는 산화방지 및 식중독 세균 억제 등 식품의 저장성을 향상시킬 목적으로 사용될 수 있으며 이에 따라 품질보존료로서 잠재적 가능성이 높다고 생각된다.

Keywords

References

  1. Hocman, G., Chemoprevention of cancer: Phenolic antioxidants (BHT, BHA). Int. J. Biochem., 20, 639-651 (1988). https://doi.org/10.1016/0020-711X(88)90158-9
  2. Ito, N., Fukushima, S., Tsuda, H., Carcinogenicity and modification of the carcinogenic response by BHA, BHT, and other antioxidants. Crit. Re. Toxicol., 15, 109-150 (1985). https://doi.org/10.3109/10408448509029322
  3. Rhim, T.J., Choi, M.Y., Antimicrobial effects on food-borne pathogens and the antioxidant activity of Torreya nucifera extract. Korean J. Comm. Living Sci., 26, 697-705 (2015). https://doi.org/10.7856/kjcls.2015.26.4.697
  4. Korea Agricultural Statistics Service, (2021, April 15). https://kosis.kr/statHtml/statHtml.do?orgId=114&tblId=DT_114_2012_S0077&vw_cd=MT_ZTITLE&list_id=K1_3&scrId=&seqNo=&lang_mode=ko&obj_var_id=&itm_id=&conn_path=MT_ZTITLE&path=%252FstatisticsList%252FstatisticsListIndex.do
  5. Lee, C.R., Kim, Y.J., Lee, K.J., Dietary supplementation of citrus and fermented citrus by-product for Juvenile red seabream Pagrus major at low water temperature. Korean J. Fish Aquat. Sci., 48, 4543-458 (2015).
  6. United States Departments of Agriculture National Agricultural Statistics Service (USDA NASS), (2019, December 27). National Agricultural Statistics Service Florida Field Office. from: https://www.nass.usda.gov/Statistics_by_State/Florida/Publications/Citrus/Citrus_Forecast/index.php.
  7. Li, S., Lo, C.Y., Ho, C.T., Hydroxylated polymethoxy-flavones and methylated flavonoids in sweet orange (Citrus sinensis) peel. J. Agric. Food Chem., 54, 4176-4185 (2006). https://doi.org/10.1021/jf060234n
  8. Park, G.H., Lee, S.H., Kim, H.Y., Jeong, H.S., Kim, E.Y., Yun, Y.W., Nam, S.Y., Lee, B.J., Comparison in antioxidant effect of four citrus fruits. J. Food Hyg. Saf., 26, 355-360 (2011).
  9. Zou, Z., Xi, W., Hu, Y., Nie, C., Zhou, Z., Antioxidant activity of citrus fruits. Food Chem., 196, 885-896 (2016). https://doi.org/10.1016/j.foodchem.2015.09.072
  10. Dhiman, A., Nanda, A., Ahmad, S., Narasimhan, B., In vitro antimicrobial status of methanolic extract of Citrus sinensis Linn. fruit peel. Chron. Young Scient., 3, 204-208 (2012). https://doi.org/10.4103/2229-5186.99573
  11. Khan, R.A., Mallick, N., Feroz, Z., Anti-inflammatory effects of Citrus sinensis L., Citrus paradisi L. and their combinations. Pak. J. Pharm. Sci., 29, 843-852 (2016).
  12. Codoner-Franch, P., Valls-Belles, V., Citrus as functional foods. Curr. Top Nutraceutical Res., 8, 173-184 (2010).
  13. Choi, M.H., Kim, K.H., Yook, H.S., Antioxidant and antibacterial activity of premature mandarin. J. Korean Soc. Food Sci. Nutr., 48, 622-629 (2019). https://doi.org/10.3746/jkfn.2019.48.6.622
  14. Yun, H.Y., Lim, S.J., Park, H.J., Shin, Y.J., Correlation between antioxidant compounds and activities of 'Hibiscus sabdariffa' teas from different origins. J. East Asian Soc. Diet Life, 28, 40-46 (2018). https://doi.org/10.17495/easdl.2018.2.28.1.40
  15. Boo, H.O., Lee, H.H., Lee, J.W., Hwang, S.J., Park, S.U., Different of total phenolics and flavonoids, radical scavenging activities and nitrite scavenging effects of Momordica charantia L. according to cultivars. Korea J. Med. Crops, 17, 15-20 (2009).
  16. Korea Food Industry Association, 2019. Food Code. KyungSung Munhwasa, Seoul, Korea. pp. 313-359.
  17. Nam, S.Y., Lee, J.Y., Ko, J.S., Kim, J.B., Jang, H.J., Kim, H.R., Lee, Y.M., Changes in antioxidant and antimicrobial activities of Schizandra chinensis Baillon under different solvent extraction. J. Korean Soc. Int. Agric., 26, 513-518 (2014). https://doi.org/10.12719/KSIA.2014.26.4.513
  18. Folin, O., Dennis, W., On phosphotungstic-phosphomolybdic compounds as color reagents. J. Biol. Chem., 12, 239-243 (1912). https://doi.org/10.1016/S0021-9258(18)88697-5
  19. Kim, E.J., Lee, H.J., Kim, H.J., Nam, H.S., Lee, M.K., Kim, H.Y., Lee, J.H., Kang, Y.S., Lee, J.O., Kim, H.Y., Comparison of colorimetric methods for the determination of flavonoid in propolis extract product. Korean J. Food Sci. Technol., 37, 918-921 (2005).
  20. Braca, A., De Tommasi, N., Di Bari, L., Pizza, C., Politi, M., Morelli, I., Antioxidant principles from Bauhinia tarapotensis. J. Natural Prod., 64, 892-895 (2001). https://doi.org/10.1021/np0100845
  21. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26, 1231-1237 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3
  22. Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., Hawkins Byrne, D., Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Comp. Anal., 19, 669-675 (2006). https://doi.org/10.1016/j.jfca.2006.01.003
  23. Kim, H.E., Kim, Y.S., Inhibitory effects of cinnamon, clove and lemongrass essential oils against biofilm formation by food poisoning bacteria. J. Food Hyg. Saf., 36, 430-439 (2021). https://doi.org/10.13103/JFHS.2021.36.5.430
  24. Korea Food Industry Association, 2019. Food Code. KyungSung Munhwasa, Seoul, Korea. pp. 544-547.
  25. SAS Institute, Inc., 1990. SAS User's Guide. Statistical Analysis Systems Institutes, Cary, NC, USA.
  26. Cho, D.J., Hur, J., Kim, H.Y., Influencing factors in drying and shrinking characteristics of root vegetables. Korean J. Food Sci. Technol., 21, 203-211 (1989).
  27. Sinclair, W.B., 1972. The Grapefruit: Its Composition, Physiology, and Products. University of California, Berkeley, CA, USA. pp.223-239.
  28. Halliwell, B., Aeschbach, R., Loliger, J., Aruoma, O.I., The characterization of antioxidants. Food Chem. Toxicol., 33, 601-617 (1995). https://doi.org/10.1016/0278-6915(95)00024-V
  29. Imai, J., Ide, N., Nagae, S., Moriguchi, T., Matsuura, H., Itakura, Y., Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Plant Med., 60, 417-420 (1994). https://doi.org/10.1055/s-2006-959522
  30. Hwang, J.H., Park, K.Y., Oh, Y.S., Lim, S.B., Phenolic compound content and antioxidant activity of citrus peels. J. Korean Soc. Food Sci. Nutr., 42, 153-160 (2013). https://doi.org/10.3746/jkfn.2013.42.2.153
  31. Boo, H.J., Chun, J.Y., Kim, J.A., Quality characteristics and antioxidative activity of different parts of bitter melon (Momordica charantia L.). Korean Soc. Food Sci. Nutr., 48, 418-423 (2019). https://doi.org/10.3746/jkfn.2019.48.4.418
  32. Park, M.J., Kim, G.H., The antioxidative and antibrowning effects of citrus peel extracts on fresh-cut apples. Korean J. Food Sci., 45, 598-604 (2013). https://doi.org/10.9721/KJFST.2013.45.5.598
  33. Azman, N.F.I.N., Azlan, A., Khoo, H.E., Razman, M.R., Antioxidant properties of fresh and frozen peels of citrus species. Curr. Res. Nutr. Food Sci., 7, 331-339 (2019). https://doi.org/10.12944/CRNFSJ.7.2.03
  34. Ghasemi, K., Ghasemi, Y., Ebrahimzadeh, M.A., Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. Pak. J. Pharm. Sci., 22, 277-281 (2009).
  35. Mehmood, T., Khan, M.R., Shabbir, M.A., Zia, M.A., Phytochemical profiling and HPLC quantification of citrus peel from different varieties. Progr. Nutr., 20, 279-288 (2018).
  36. Shin, J.H., Lee, S.J., Seo, J.K., Sung, N.J., Antioxidant activity of hot-water extract from Yuza (Citrus junos SIEB ex TANAKA) peel. J. Life Sci., 18, 1745-1751 (2008). https://doi.org/10.5352/JLS.2008.18.12.1745
  37. De Moraes Barros, H.R., De Castro Ferreira, T.A.P., Genovese, M.I., Antioxidant capacity and mineral content of pulp and peel from commercial cultivars of citrus from Brazil. Food Chem., 134, 1892-1898 (2012). https://doi.org/10.1016/j.foodchem.2012.03.090
  38. Huang, D., Ou, B., Prior, R.L., The chemistry behind antioxidant capacity assays. J. Agri. Food Chem., 53, 1841-1856 (2005). https://doi.org/10.1021/jf030723c
  39. Ali, J., Das, B., Saikia, T., Antimicrobial activity of lemon peel (Citrus limon) extract. Int. J. Curr. Pharm. Res., 9, 79-82 (2017).
  40. Corbo, M.R., Speranza, B., Filippone, A., Granatiero, S., Conte, A., Sinigaglia, M., Del Nobile, M.A., Study on the synergic effect of natural compounds on the microbial quality decay of packed fish hamburger. Inter. J. Food Microb., 127, 261-267 (2008). https://doi.org/10.1016/j.ijfoodmicro.2008.07.014
  41. Negi P., Jayaprakasha, G., Antibacterial activity of grapefruit (Citrus paradisi) peel extracts. Eur. Food Res. Technol., 213, 484-487 (2001). https://doi.org/10.1007/s002170100394
  42. Cowan, M.M., Plant products as antimicrobial agents. Clin. Microbiol. Rev., 12, 564-582 (1999). https://doi.org/10.1128/CMR.12.4.564
  43. Eun, J.B., Jung, Y.M., Woo, G.J., Identification and determination of dietary fibers and flavonoids in pulp and peel of Korean tangerine (Citrus aurantium var.). Korean J. Food Sci., 28, 371-377 (1996).
  44. Wang, M., Meng, D., Zhang, P., Wang, X., Du, G., Brennan, C., Zhao, H., Antioxidant protection of nobiletin, 5-demethylnobiletin, tangeretin, and 5-demethyltangeretin from citrus peel in Saccharomyces cerevisiae. J. Agric. Food Chem., 66, 3155-3160 (2018). https://doi.org/10.1021/acs.jafc.8b00509
  45. Murunga, A.N., Miruka, D.O., Driver, C., Nkomo, F.S., Cobongela, S.Z., Owira, P.M., Grapefruit derived flavonoid naringin improves ketoacidosis and lipid peroxidation in type 1 diabetes rat model. PLoS One. 11 (2016).
  46. Ortuno, A.A., Baidez, P., Gomez, M.C., Arcas, I., Porras, A.G., Del Rio, J.A., Citrus paradisi and Citrus sinensis flavonoids: Their influence in the defence mechanism against Penicillium digitatum. Food Chem., 98, 351-358 (2006). https://doi.org/10.1016/j.foodchem.2005.06.017