DOI QR코드

DOI QR Code

Generation of Cortical Brain Organoid with Vascularization by Assembling with Vascular Spheroid

  • Myung Geun Kook (Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University) ;
  • Seung-Eun Lee (Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University) ;
  • Nari Shin (Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University) ;
  • Dasom Kong (Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University) ;
  • Da-Hyun Kim (Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University) ;
  • Min-Soo Kim (Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University) ;
  • Hyun Kyoung Kang (Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University) ;
  • Soon Won Choi (Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University) ;
  • Kyung-Sun Kang (Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University)
  • Received : 2021.09.15
  • Accepted : 2021.12.11
  • Published : 2022.02.28

Abstract

Background and Objectives: Brain organoids have the potential to improve our understanding of brain development and neurological disease. Despite the importance of brain organoids, the effect of vascularization on brain organoids is largely unknown. The objective of this study is to develop vascularized organoids by assembling vascular spheroids with cerebral organoids. Methods and Results: In this study, vascularized spheroids were generated from non-adherent microwell culture system of human umbilical vein endothelial cells, human dermal fibroblasts and human umbilical cord blood derived mesenchymal stem cells. These vascular spheroids were used for fusion with iPSCs induced cerebral organoids. Immunostaining studies of vascularized organoids demonstrated well organized vascular structures and reduced apoptosis. We showed that the vascularization in cerebral organoids up-regulated the Wnt/β-catenin signaling. Conclusions: We developed vascularized cerebral organoids through assembly of brain organoids with vascular spheroids. This method could not only provide a model to study human cortical development but also represent an opportunity to explore neurological disease.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A4A4078907). The funders had no role in the study design, analysis, interpretation and submission of data.

References

  1. Marshall JJ, Mason JO. Mouse vs man: organoid models of brain development & disease. Brain Res 2019;1724:146427 
  2. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA. Cerebral organoids model human brain development and microcephaly. Nature 2013;501:373-379 
  3. Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 2014;9:2329-2340 
  4. Qian X, Song H, Ming GL. Brain organoids: advances, applications and challenges. Development 2019;146:dev166074 
  5. Clevers H. Modeling development and disease with organoids. Cell 2016;165:1586-1597 
  6. Luo C, Lancaster MA, Castanon R, Nery JR, Knoblich JA, Ecker JR. Cerebral organoids recapitulate epigenomic signatures of the human fetal brain. Cell Rep 2016;17:3369-3384 
  7. Sloan SA, Andersen J, Pasca AM, Birey F, Pasca SP. Generation and assembly of human brain region-specific three-dimensional cultures. Nat Protoc 2018;13:2062-2085 
  8. Koo B, Choi B, Park H, Yoon KJ. Past, present, and future of brain organoid technology. Mol Cells 2019;42:617-627 
  9. Matsui TK, Tsuru Y, Hasegawa K, Kuwako KI. Vascularization of human brain organoids. Stem Cells 2021;39:1017-1024 
  10. Cakir B, Xiang Y, Tanaka Y, Kural MH, Parent M, Kang YJ, Chapeton K, Patterson B, Yuan Y, He CS, Raredon MSB, Dengelegi J, Kim KY, Sun P, Zhong M, Lee S, Patra P, Hyder F, Niklason LE, Lee SH, Yoon YS, Park IH. Engineering of human brain organoids with a functional vascular-like system. Nat Methods 2019;16:1169-1175 
  11. Shi Y, Sun L, Wang M, Liu J, Zhong S, Li R, Li P, Guo L, Fang A, Chen R, Ge WP, Wu Q, Wang X. Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol 2020;18:e3000705 
  12. Licht T, Keshet E. The vascular niche in adult neurogenesis. Mech Dev 2015;138 Pt 1:56-62 
  13. Karakatsani A, Shah B, Ruiz de Almodovar C. Blood vessels as regulators of neural stem cell properties. Front Mol Neurosci 2019;12:85 
  14. Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci USA 2009;106:641-646 
  15. Chenn A. Wnt/beta-catenin signaling in cerebral cortical development. Organogenesis 2008;4:76-80 
  16. De Moor L, Merovci I, Baetens S, Verstraeten J, Kowalska P, Krysko DV, De Vos WH, Declercq H. High-throughput fabrication of vascularized spheroids for bioprinting. Biofabrication 2018;10:035009 
  17. Mulligan KA, Cheyette BN. Wnt signaling in vertebrate neural development and function. J Neuroimmune Pharmacol 2012;7:774-787 
  18. Muoio V, Persson PB, Sendeski MM. The neurovascular unit - concept review. Acta Physiol (Oxf) 2014;210:790-798 
  19. Bell AH, Miller SL, Castillo-Melendez M, Malhotra A. The neurovascular unit: effects of brain insults during the perinatal period. Front Neurosci 2020;13:1452 
  20. Pham MT, Pollock KM, Rose MD, Cary WA, Stewart HR, Zhou P, Nolta JA, Waldau B. Generation of human vascularized brain organoids. Neuroreport 2018;29:588-593 
  21. Zhao X, Xu Z, Xiao L, Shi T, Xiao H, Wang Y, Li Y, Xue F, Zeng W. Review on the vascularization of organoids and organoids-on-a-chip. Front Bioeng Biotechnol 2021;9:637048 
  22. Rademakers T, Horvath JM, van Blitterswijk CA, LaPointe VLS. Oxygen and nutrient delivery in tissue engineering: approaches to graft vascularization. J Tissue Eng Regen Med 2019;13:1815-1829 
  23. Heiss M, Hellstrom M, Kalen M, May T, Weber H, Hecker M, Augustin HG, Korff T. Endothelial cell spheroids as a versatile tool to study angiogenesis in vitro. FASEB J 2015;29:3076-3084 
  24. Pfisterer L, Korff T. Spheroid-based in vitro angiogenesis model. Methods Mol Biol 2016;1430:167-177 
  25. Serra J, Alves CPA, Brito L, Monteiro GA, Cabral JMS, Prazeres DMF, da Silva CL. Engineering of human mesenchymal stem/stromal cells with vascular endothelial growth factor-encoding minicircles for angiogenic ex vivo gene therapy. Hum Gene Ther 2019;30:316-329 
  26. Arutyunyan I, Fatkhudinov T, Kananykhina E, Usman N, Elchaninov A, Makarov A, Bolshakova G, Goldshtein D, Sukhikh G. Role of VEGF-A in angiogenesis promoted by umbilical cord-derived mesenchymal stromal/stem cells: in vitro study. Stem Cell Res Ther 2016;7:46 
  27. Maacha S, Sidahmed H, Jacob S, Gentilcore G, Calzone R, Grivel JC, Cugno C. Paracrine mechanisms of mesenchymal stromal cells in angiogenesis. Stem Cells Int 2020;2020:4356359 
  28. Mansour AA, Goncalves JT, Bloyd CW, Li H, Fernandes S, Quang D, Johnston S, Parylak SL, Jin X, Gage FH. An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol 2018;36:432-441 
  29. Lau M, Li J, Cline HT. In vivo analysis of the neurovascular niche in the developing Xenopus brain. eNeuro 2017;4:ENEURO.0030-17.2017 
  30. Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F. A specialized vascular niche for adult neural stem cells. Cell Stem Cell 2008;3:279-288 
  31. Tang M, Gao G, Rueda CB, Yu H, Thibodeaux DN, Awano T, Engelstad KM, Sanchez-Quintero MJ, Yang H, Li F, Li H, Su Q, Shetler KE, Jones L, Seo R, McConathy J, Hillman EM, Noebels JL, De Vivo DC, Monani UR. Brain microvasculature defects and Glut1 deficiency syndrome averted by early repletion of the glucose transporter-1 protein. Nat Commun 2017;8:14152 
  32. Tang M, Park SH, Petri S, Yu H, Rueda CB, Abel ED, Kim CY, Hillman EM, Li F, Lee Y, Ding L, Jagadish S, Frankel WN, De Vivo DC, Monani UR. An early endothelial cell-specific requirement for Glut1 is revealed in Glut1 deficiency syndrome model mice. JCI Insight 2021;6:e145789 
  33. Wexler EM, Paucer A, Kornblum HI, Palmer TD, Geschwind DH. Endogenous Wnt signaling maintains neural progenitor cell potency. Stem Cells 2009;27:1130-1141 
  34. Kriska J, Janeckova L, Kirdajova D, Honsa P, Knotek T, Dzamba D, Kolenicova D, Butenko O, Vojtechova M, Capek M, Kozmik Z, Taketo MM, Korinek V, Anderova M. Wnt/β-catenin signaling promotes differentiation of ischemia-activated adult neural stem/progenitor cells to neuronal precursors. Front Neurosci 2021;15:628983