DOI QR코드

DOI QR Code

Environmental footprint impacts of nuclear energy consumption: The role of environmental technology and globalization in ten largest ecological footprint countries

  • Received : 2022.02.11
  • Accepted : 2022.05.16
  • Published : 2022.10.25

Abstract

This study investigates the environmental footprint impacts of nuclear energy consumption in the presence of environmental technology and globalization of the ten largest ecological footprint countries from 1990 up to 2017. By considering a set of methods that can help solve the issue of cross-sectional dependence, we employ the Lagrange multiplier bootstrap cointegration method, Driscoll-Kraay standard errors for long-run estimation and feasible generalized least squares (FGLS) and panel-corrected standard errors (PCSE) for robustness. The finding revealed significant negative effects of nuclear energy consumption, environmental-related technology, population density and significant positive effects of globalization and economic growth on ecological footprint. These results are also robust by assessing the long-run impacts of predictors on carbon footprint and CO2 emissions as alternate ecological measures. These conclusions provide the profound significance of nuclear energy consumption for environmentally sustainable development in the top ten ecological footprint countries and serve as an important reference for ecological security for other countries globally.

Keywords

References

  1. R. Alvarado, C. Ortiz, N. Jimenez, D. Ochoa-Jimenez, B. Tillaguango, Ecological footprint, air quality and research and development: the role of agriculture and international trade, J. Clean. Prod. 288 (2021), https://doi.org/10.1016/j.jclepro.2020.125589.
  2. Z. Langnel, G.B. Amegavi, Globalization, electricity consumption and ecological footprint: an autoregressive distributive lag (ARDL) approach, Sustain. Cities Soc. 63 (2020), https://doi.org/10.1016/j.scs.2020.102482.
  3. U.K. Pata, Renewable and non-renewable energy consumption, economic complexity, CO2 emissions, and ecological footprint in the USA: testing the EKC hypothesis with a structural break, Environ. Sci. Pollut. Control Ser. 28 (2021) 846e861, https://doi.org/10.1007/s11356-020-10446-3.
  4. M. Shahbaz, A. Sinha, C. Raghutla, X.V. Vo, Decomposing scale and technique effects of financial development and foreign direct investment on renewable energy consumption, Energy 238 (2022) 121758, https://doi.org/10.1016/J.ENERGY.2021.121758.
  5. L. Charfeddine, The impact of energy consumption and economic development on ecological footprint and CO2 emissions: evidence from a markov switching equilibrium correction model, Energy Econ. 65 (2017) 355-374, https://doi.org/10.1016/j.eneco.2017.05.009.
  6. B. Ozcan, D. Khan, S. Bozoklu, Dynamics of ecological balance in OECD countries: sustainable or unsustainable? Sustain. Prod. Consum. 26 (2021) 638-647, https://doi.org/10.1016/j.spc.2020.12.014.
  7. S. Saud, S. Chen, A. Haseeb, Sumayya, the role of financial development and globalization in the environment: accounting ecological footprint indicators for selected one-belt-one-road initiative countries, J. Clean. Prod. 250 (2020) 119518, https://doi.org/10.1016/j.jclepro.2019.119518.
  8. U.K. Pata, Linking renewable energy, globalization, agriculture, CO2 emissions and ecological footprint in BRIC countries: a sustainability perspective, Renew. Energy 173 (2021) 197-208, https://doi.org/10.1016/j.renene.2021.03.125.
  9. Global Footprint Network, National Footprint Accounts, 2019. https://data.footprintnetwork.org/#/. (Accessed 21 December 2021).
  10. V. Yilanci, U.K. Pata, Investigating the EKC hypothesis for China: the role of economic complexity on ecological footprint, Environ. Sci. Pollut. Control Ser. 27 (2020) 32683-32694, https://doi.org/10.1007/s11356-020-09434-4.
  11. C. Poinssot, S. Bourg, B. Boullis, Improving the nuclear energy sustainability by decreasing its environmental footprint. Guidelines from life cycle assessment simulations, Prog. Nucl. Energy 92 (2016) 234-241, https://doi.org/10.1016/J.PNUCENE.2015.10.012.
  12. C. McCombie, M. Jefferson, Renewable and nuclear electricity: comparison of environmental impacts, Energy Pol. 96 (2016) 758-769, https://doi.org/10.1016/J.ENPOL.2016.03.022.
  13. S.A. Sarkodie, S. Adams, Renewable energy, nuclear energy, and environmental pollution: accounting for political institutional quality in South Africa, Sci. Total Environ. 643 (2018) 1590-1601, https://doi.org/10.1016/j.scitotenv.2018.06.320.
  14. L.S. Lau, C.K. Choong, C.F. Ng, F.M. Liew, S.L. Ching, Is nuclear energy clean? Revisit of Environmental Kuznets Curve hypothesis in OECD countries, Econ. Modell. 77 (2019) 12-20, https://doi.org/10.1016/j.econmod.2018.09.015.
  15. C.C. Lee, Y. Bin Chiu, Oil prices, nuclear energy consumption, and economic growth: new evidence using a heterogeneous panel analysis, Energy Pol. 39 (2011) 2111-2120, https://doi.org/10.1016/j.enpol.2011.02.002.
  16. Danish, R. Ulucak, S. Erdogan, The effect of nuclear energy on the environment nexus in the context of globalization: consumption vs production-based CO2 emissions, Nucl. Eng. Technol. (2021), https://doi.org/10.1016/j.net.2021.10.030.
  17. N. Mahmood, Danish, Z. Wang, B. Zhang, The role of nuclear energy in the correction of environmental pollution: evidence from Pakistan, Nucl. Eng. Technol. 52 (2020) 1327-1333, https://doi.org/10.1016/j.net.2019.11.027.
  18. C. Poinssot, S. Bourg, N. Ouvrier, N. Combernoux, C. Rostaing, M. VargasGonzalez, J. Bruno, Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles, Energy 69 (2014) 199-211, https://doi.org/10.1016/j.energy.2014.02.069.
  19. J. Baek, A panel cointegration analysis of CO2 emissions, nuclear energy and income in major nuclear generating countries, Appl. Energy 145 (2015) 133-138, https://doi.org/10.1016/j.apenergy.2015.01.074.
  20. R. Ulucak Danish, How do environmental technologies affect green growth? Evidence from BRICS economies, Sci. Total Environ. 712 (2020) 136504, https://doi.org/10.1016/j.scitotenv.2020.136504.
  21. M. Hussain, E. Dogan, The role of institutional quality and environmentrelated technologies in environmental degradation for BRICS, J. Clean. Prod. 304 (2021) 127059, https://doi.org/10.1016/j.jclepro.2021.127059.
  22. S. Erdogan, S. Yildirim, D.C. Yildirim, A. Gedikli, The effects of innovation on sectoral carbon emissions: evidence from G20 countries, J. Environ. Manag. 267 (2020) 110637, https://doi.org/10.1016/j.jenvman.2020.110637.
  23. M.F. Bashir, B. Ma, M.A. Bashir, M. Radulescu, U. Shahzad, Investigating the role of environmental taxes and regulations for renewable energy consumption: evidence from developed economies, Econ. Res. - Ekonomska Istrazivanja (2021), https://doi.org/10.1080/1331677X.2021.1962383.
  24. A. Sharif, D.I. Godil, B. Xu, A. Sinha, S.A. Rehman Khan, K. Jermsittiparsert, Revisiting the role of tourism and globalization in environmental degradation in China: fresh insights from the quantile ARDL approach, J. Clean. Prod. 272 (2020) 122906, https://doi.org/10.1016/J.JCLEPRO.2020.122906.
  25. S.T. Hassan, E. Xia, N.H. Khan, S.M.A. Shah, Economic growth, natural resources, and ecological footprints: evidence from Pakistan, Environ. Sci. Pollut. Control Ser. 26 (2019) 2929-2938, https://doi.org/10.1007/s11356-018-3803-3.
  26. S.T. Hassan, Danish, Salah-Ud-Din. khan, M. Awais Baloch, Z.H. Tarar, Is nuclear energy a better alternative for mitigating CO2 emissions in BRICS countries? An empirical analysis, Nucl. Eng. Technol. 52 (2020) 2969-2974, https://doi.org/10.1016/j.net.2020.05.016.
  27. K. Saidi, A. Omri, Reducing CO2 emissions in OECD countries: do renewable and nuclear energy matter? Prog. Nucl. Energy 126 (2020) 103425, https://doi.org/10.1016/j.pnucene.2020.103425.
  28. A. Azam, M. Rafiq, M. Shafique, H. Zhang, J. Yuan, Analyzing the effect of natural gas, nuclear energy and renewable energy on GDP and carbon emissions: a multi-variate panel data analysis, Energy 219 (2021), https://doi.org/10.1016/j.energy.2020.119592.
  29. M. Sadiq, R. Shinwari, M. Usman, I. Ozturk, A.I. Maghyereh, Linking nuclear energy, human development and carbon emission in BRICS region: do external debt and financial globalization protect the environment? Nucl. Eng. Technol. (2022) https://doi.org/10.1016/j.net.2022.03.024.
  30. N.D. Cakar, S. Erdogan, A. Gedikli, M.A. Oncu, Nuclear energy consumption, nuclear fusion reactors and environmental quality: the case of G7 countries, Nucl. Eng. Technol. 54 (2022) 1301e1311, https://doi.org/10.1016/j.net.2021.10.015.
  31. H.S. Kim, Comparison of cost efficiencies of nuclear power and renewable energy generation in mitigating CO2 emissions, Environ. Sci. Pollut. Control Ser. 28 (2021) 789-795, https://doi.org/10.1007/s11356-020-10537-1.
  32. S. Erdogan, Dynamic nexus between technological innovation and buildings Sector's carbon emission in BRICS countries, J. Environ. Manag. 293 (2021) 112780, https://doi.org/10.1016/j.jenvman.2021.112780.
  33. S. Ahmed, K. Ahmed, M. Ismail, Predictive analysis of CO2 emissions and the role of environmental technology, energy use and economic output: evidence from emerging economies, Air Quality, Atmosphere and Health 13 (2020) 1035-1044, https://doi.org/10.1007/s11869-020-00855-1.
  34. M. Hussain, G.M. Mir, M. Usman, C. Ye, S. Mansoor, Analysing the role of environment-related technologies and carbon emissions in emerging economies: a step towards sustainable development, Environ Technol (United Kingdom) (2020) 1-9, https://doi.org/10.1080/09593330.2020.1788171, 0.
  35. C.N. Mensah, X. Long, L. Dauda, K.B. Boamah, M. Salman, F. Appiah-Twum, A.K. Tachie, Technological innovation and green growth in the organization for economic cooperation and development economies, J. Clean. Prod. 240 (2019) 118204, https://doi.org/10.1016/j.jclepro.2019.118204.
  36. U.K. Pata, A.E. Caglar, Investigating the EKC hypothesis with renewable energy consumption, human capital, globalization and trade openness for China: evidence from augmented ARDL approach with a structural break, Energy 216 (2021) 119220, https://doi.org/10.1016/j.energy.2020.119220.
  37. U.K. Pata, V. Yilanci, Financial development, globalization and ecological footprint in G7: further evidence from threshold cointegration and fractional frequency causality tests, Environ. Ecol. Stat. 27 (2020) 803-825, https://doi.org/10.1007/s10651-020-00467-z.
  38. O.A. Aluko, E.E. Osei Opoku, M. Ibrahim, Investigating the environmental effect of globalization: insights from selected industrialized countries, J. Environ. Manag. 281 (2021) 111892, https://doi.org/10.1016/j.jenvman.2020.111892.
  39. L. Figge, K. Oebels, A. Offermans, The effects of globalization on Ecological Footprints: an empirical analysis, Environ. Dev. Sustain. 19 (2017) 863-876, https://doi.org/10.1007/s10668-016-9769-8.
  40. U.K. Pata, M. Aydin, I. Haouas, Are natural resources abundance and human development a solution for environmental pressure? Evidence from top ten countries with the largest ecological footprint, Resour. Pol. 70 (2021) 101923, https://doi.org/10.1016/j.resourpol.2020.101923.
  41. R. Ulucak, D. Lin, Persistence of policy shocks to ecological footprint of the USA, Ecol. Indicat. 80 (2017) 337-343, https://doi.org/10.1016/j.ecolind.2017.05.020.
  42. Danish, B. Ozcan, R. Ulucak, An empirical investigation of nuclear energy consumption and carbon dioxide (CO2) emission in India: bridging IPAT and EKC hypotheses, Nucl. Eng. Technol. (2021), https://doi.org/10.1016/j.net.2020.12.008.
  43. BP, Statistical, Review of World Energy, 69th Edition, 2020. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energyeconomics/statistical-review/bp-stats-review-2020-full-report.pdf. (Accessed 21 December 2021).
  44. OECD Statistics, Environment Database, 2020. https://stats.oecd.org/. (Accessed 20 December 2021).
  45. S. Gygli, F. Haelg, N. Potrafke, J.E. Sturm, The KOF globalisation index e revisited, Review of International Organizations 14 (2019) 543-574, https://doi.org/10.1007/s11558-019-09344-2.
  46. World Bank, World Development Indicator, 2020. https://databank.worldbank.org/reports.aspx?source¼world-development-indicators. (Accessed 20 December 2021).
  47. T.S. Breusch, A.R. Pagan, The Lagrange multiplier test and its applications to model specification in econometrics, Rev. Econ. Stud. 47 (1980) 239, https://doi.org/10.2307/2297111.
  48. B.H. Baltagi, Q. Feng, C. Kao, A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel, J. Econom. 170 (2012) 164-177, https://doi.org/10.1016/j.jeconom.2012.04.004.
  49. M.H. Pesaran, General Diagnostic Tests for Cross-Sectional Dependence in Panels, University of Cambridge, Cambridge Working Paper in Economic, 2004.
  50. E.W. Frees, Assessing cross-sectional correlation in panel data, J. Econom. 69 (1995) 393-414, https://doi.org/10.1016/0304-4076(94)01658-M.
  51. M. Friedman, The use of ranks to avoid the assumption of normality implicit in the analysis of variance, J. Am. Stat. Assoc. 32 (1937) 675-701, https://doi.org/10.1080/01621459.1937.10503522.
  52. M.H. Pesaran, A simple panel unit root test in the presence of cross-section dependence, J. Appl. Econom. 22 (2007) 265-312, https://doi.org/10.1002/jae.951.
  53. J. Westerlund, D.L. Edgerton, A panel bootstrap cointegration test, Econ. Lett. 97 (2007) 185-190, https://doi.org/10.1016/j.econlet.2007.03.003.
  54. J.C. Driscoll, A.C. Kraay, Consistent covariance matrix estimation with spatially dependent panel data, Rev. Econ. Stat. 80 (1998) 549-559, https://doi.org/10.1162/003465398557825.
  55. R.W. Parks, Efficient estimation of a system of regression equations when disturbances are both serially and contemporaneously correlated, J. Am. Stat. Assoc. 62 (1967) 500-509, https://doi.org/10.1080/01621459.1967.10482923.
  56. N. Beck, J.N. Katz, What to do (and not to do) with time-series cross-section data, Am. Polit. Sci. Rev. 89 (1995) 634-647, https://doi.org/10.2307/2082979.
  57. E.I. Dumitrescu, C. Hurlin, Testing for Granger non-causality in heterogeneous panels, Econ. Modell. 29 (2012) 1450-1460, https://doi.org/10.1016/j.econmod.2012.02.014.
  58. S.A. Sarkodie, Environmental performance, biocapacity, carbon & ecological footprint of nations: drivers, trends and mitigation options, Sci. Total Environ. 751 (2021) 141912, https://doi.org/10.1016/J.SCITOTENV.2020.141912.
  59. Y. Liu, C. Gao, Y. Lu, The impact of urbanization on GHG emissions in China: the role of population density, J. Clean. Prod. 157 (2017) 299-309, https://doi.org/10.1016/J.JCLEPRO.2017.04.138.
  60. N. Kongbuamai, M.W. Zafar, S.A.H. Zaidi, Y. Liu, Determinants of the ecological footprint in Thailand: the influences of tourism, trade openness, and population density, Environ. Sci. Pollut. Control Ser. 27 (2020) 40171-40186, https://doi.org/10.1007/s11356-020-09977-6.
  61. Z. Ahmed, B. Zhang, M. Cary, Linking economic globalization, economic growth, financial development, and ecological footprint: evidence from symmetric and asymmetric ARDL, Ecol. Indicat. 121 (2021) 107060, https://doi.org/10.1016/j.ecolind.2020.107060.