DOI QR코드

DOI QR Code

Calculation and measurement of Al prompt capture gammas above water in a pool-type reactor

  • Received : 2021.04.22
  • Accepted : 2022.05.18
  • Published : 2022.10.25

Abstract

Prompt capture gammas are an important part of the fission reactor gamma field. Because some of the structural materials after neutron capture can emit photons with high energies forming the dominant component of the gamma spectrum in the high energy region, the following study of the high energy capture gamma was carried out. High energy gamma radiation may play a major role in areas of the radiation sciences as reactor dosimetry. The HPGe measurements and calculations of the high-energy aluminum capture gamma were performed at two moderator levels in the VR-1 pool-type reactor. The result comparison for nominal levels was within two sigma uncertainties for the major 7.724 MeV peak. A larger discrepancy of 60% was found for the 7.693 MeV peak. The spectra were also measured using a stilbene detector, and a good agreement between HPGe and stilbene was observed. This confirms the validity of stilbene measurements of gamma flux. Additionally, agreement of the wide peak measurement in 7-9.2 MeV by stilbene detector shows the possibility of using the organic scintillators as an independent power monitor. This fact is valid in these reactor types because power is proportional to the thermal neutron flux, which is also proportional to the production of capture gammas forming the wide peak.

Keywords

Acknowledgement

The presented work has been realized within Institutional Support by the Ministry of Industry and Trade and with the use of the infrastructure Reactors LVR-15 and LR-0, which is financially supported by the Ministry of Education, Youth and Sports - project LM2015074, the SANDA project funded under H2020-EURATOM-1.1 contract 847552. The authors would like to thank the VR-1 staff headed by F. Fejt for their effective help during the experiments and for the precise monitoring of the reactor power. The VR-1 operation was supported by the LM2018118 project: VR-1 - Support for reactor operation for research activities, which was granted by The Ministry of Education, Youth and Sports of the Czech Republic.

References

  1. T. Miller, Secondary gamma production, in: Work. Appl. Nucl. Data Act., WANDA 2021), 2021. https://conferences.lbl.gov/event/504/contributions/4103/attachments/3085/1685/miller-secGam-wanda2021.pdf.
  2. D. Matters, Nuclear data for defense nuclear nonproliferation applications, in: Work. Appl. Nucl. Data Act., 2021. WANDA 2021), https://conferences.lbl.gov/event/504/.
  3. A. Gruel, K. Ambrozic, C. Destouches, V. Radulovic, A. Sardet, L. Snoj, Gammaheating and gamma flux measurements in the JSI TRIGA reactor: results and prospects, IEEE Trans. Nucl. Sci. 67 (2020) 559-567, https://doi.org/10.1109/TNS.2020.2974968.
  4. M. Jalali, M.R. Abdi, M.M. Davati, Prompt gamma radiation as a new tool to measure reactor power, Radiat. Phys. Chem. 91 (2013) 19-27, https://doi.org/10.1016/j.radphyschem.2013.05.033.
  5. M. Koleska, L. Viererbl, M. Marek, J. Ernest, M. Sunka, M. Vins, Determination of IRT-2M fuel burnup by gamma spectrometry, Appl. Radiat. Isot. 107 (2016) 92-97, https://doi.org/10.1016/j.apradiso.2015.10.001.
  6. S. Aldawahrah, S. Dawahra, K. Khattab, G. Saba, M. Boush, Calculation of fuel burnup and radionuclide inventory for the HEU and potential LEU fuels in the IRT research reactor, Results Phys. 11 (2018) 564-569, https://doi.org/10.1016/j.rinp.2018.09.044.
  7. M.N. Anikin, I.I. Lebedev, A.G. Naymushin, N.V. Smolnikov, Feasibility study of using IRT-T research reactor for BNCT applications, Appl. Radiat. Isot. 166 (2020) 109243, https://doi.org/10.1016/j.apradiso.2020.109243.
  8. D. Harutyunyan, I. Mirzov, M. Kostal, M. Schulc, V. Klupak, Estimation of void swelling in VVER-1000 baffle using benchmark in LR-0 reactor, in: React. Dosim. 16th Int. Symp., ASTM International, Santa Fe, NM, USA, 2018, pp. 321-334, https://doi.org/10.1520/stp160820170091.
  9. A.M. Parsons, Review of nuclear techniques for planetary science, Int. J. Mod. Phys. Conf. Ser. 50 (2020), 2060004, https://doi.org/10.1142/S2010194520600046.
  10. M.-L. Mauborgne, R.J. Radtke, C. Stoller, F. Haranger, Impact of the ENDF/BVIII.0 library on modeling nuclear tools for oil exploration, EPJ Web Conf. 239 (2020), 20007, https://doi.org/10.1051/epjconf/202023920007.
  11. R. Capote, A. Trkov, INDC International Nuclear Data Committee: Evaluation of Thermal Neutron Capture Gamma Spectra, 2020. Vienna, https://www-nds.iaea.org/publications/indc/indc-nds-0810.pdf.
  12. M. Kostal, E. Losa, M. Schulc, J. Simon, T. Bily, V. Rypar, M. Marecek, J. Uhlir, T. Czakoj, R. Capote, A. Trkov, S. Simakov, Validation of IRDFF-II library in VR-1 reactor field using thin targets, Ann. Nucl. Energy 158 (2021), 108268, https://doi.org/10.1016/j.anucene.2021.108268.
  13. A. Kolros, O. Huml, M. Kriz, J. Kos, Equipment for neutron measurements at VR-1 Sparrow training reactor, Appl. Radiat. Isot. 68 (2010) 570-574, https://doi.org/10.1016/j.apradiso.2009.09.012.
  14. P. Dryak, P. Kovar, Experimental and MC determination of HPGe detector efficiency in the 40-2754 keV energy range for measuring point source geometry with the source-to-detector distance of 25 cm, Appl. Radiat. Isot. 64 (2006) 1346-1349, https://doi.org/10.1016/J.APRADISO.2006.02.083.
  15. J. Boson, G. Agren, L. Johansson, A detailed investigation of HPGe detector response for improved Monte Carlo efficiency calculations, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 587 (2008) 304-314, https://doi.org/10.1016/j.nima.2008.01.062.
  16. M. Kostal, J. Soltes, L. Viererbl, Z. Metej, F. Cvachovec, V. Rypar, E. Losa, Measurement of neutron spectra in a silicon filtered neutron beam using stilbene detectors at the LVR-15 research reactor, Appl. Radiat. Isot. 128 (2017) 41-48, https://doi.org/10.1016/J.APRADISO.2017.06.026.
  17. J. Cvachovec, F. Cvachovec, Maximum likelihood estimation of a neutron spectrum and associated uncertainties, Adv. Mil. Technol. 3 (2008) 67-79. http://aimt.unob.cz/articles/08_02/08_02 (8).pdf. (Accessed 10 September 2020).
  18. C.J. Werner, J.S. Bull, C.J. Solomon, F.B. Brown, G.W. McKinney, M.E. Rising, D.A. Dixon, R.L. Martz, H.G. Hughes, L.J. Cox, A.J. Zukaitis, J.C. Armstrong, R.A. Forster, L. Casswell, MCNP Version 6.2 Release Notes, 2018, https://doi.org/10.2172/1419730. Los Alamos, NM (United States).
  19. D.A. Brown, M.B. Chadwick, R. Capote, A.C. Kahler, A. Trkov, M.W. Herman, A.A. Sonzogni, Y. Danon, A.D. Carlson, M.E. Dunn, D.L. Smith, G.M. Hale, G. Arbanas, R. Arcilla, C.R. Bates, B. Beck, B. Becker, F.B. Brown, R.J. Casperson, J. Conlin, D.E. Cullen, M.-A. Descalle, R. Firestone, T. Gaines, K.H. Guber, A.I. Hawari, J. Holmes, T.D. Johnson, T. Kawano, B.C. Kiedrowski, A.J. Koning, S. Kopecky, L. Leal, J.P. Lestone, C.R. Lubitz, J.I. Marquez Damian, C.M. Mattoon, E.A. McCutchan, S.F. Mughabghab, P. Navratil, D. Neudecker, G.P.A. Nobre, G. Noguere, M. Paris, M.T. Pigni, A.J.M. Plompen, B. Pritychenko, V.G. Pronyaev, D. Roubtsov, D. Rochman, P. Romano, P. Schillebeeckx, S. Simakov, M. Sin, I. Sirakov, B. Sleaford, V. Sobes, E. Soukhovitski, I. Stetcu, P. Talou, I.J. Thompson, S.C. van der Marck, L. Welser-Sherrill, D. Wiarda, M.C. White, J.L. Wormald, R.Q. Wright, M.L. Zerkle, G. Zerovnik, Y. Zhu, ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148 (2018) 1-142, https://doi.org/10.1016/J.NDS.2018.02.001.
  20. M. Kostal, F. Cvachovec, V. Rypar, V. Juricek, Calculation and measurement of neutron flux in the VVER-1000 mock-up on the LR-0 research reactor, Ann. Nucl. Energy 40 (2012) 25e34, https://doi.org/10.1016/J.ANUCENE.2011.10.003.
  21. J.F. Briesmeister, MCNP TM-A General Monte Carlo N-Particle Transport Code Version 4C, Los Alamos National Laboratory, 2000.
  22. O. Huml, J. Rataj, T. Bily, Application of MCNP for neutronic calculations at VR1 training reactor, in: D. Caruge, C. Calvin, C.M. Diop, F. Malvagi, J.-C. Trama (Eds.), SNA + MC 2013 - Jt. Int. Conf. Supercomput. Nucl. Appl. + Monte Carlo, EDP Sciences, Les Ulis, France, 2014, p. 5103, https://doi.org/10.1051/snamc/201405103.
  23. J. Rataj, O. Huml, H. Lenka, T. Bily, Benchmark experiments for validation of reaction rates determination in reactor dosimetry, Radiat. Phys. Chem. 104 (2014) 363-367, https://doi.org/10.1016/j.radphyschem.2014.02.004.
  24. T. Bily, J. Rataj, P. Kladiva, Benchmark on neutron flux spatial effects in subcritical system based on IRT-4 M fuel for near-core positions, Ann. Nucl. Energy 157 (2021), 108231, https://doi.org/10.1016/j.anucene.2021.108231.
  25. T. Bily, J. Rataj, O. Huml, O. Chvala, Effect of kinetics parameters on transients calculations in external source driven subcritical VR-1 reactor, Ann. Nucl. Energy 123 (2019) 97e109, https://doi.org/10.1016/J.ANUCENE.2018.09.007.
  26. M. Kostal, E. Losa, Z. Matej, V. Juricek, D. Harutyunyan, O. Huml, M. Stefanik, F. Cvachovec, F. Mravec, M. Schulc, T. Czakoj, V. Rypar, Characterization of mixed N/G beam of the VR-1 reactor, Ann. Nucl. Energy 122 (2018) 69-78, https://doi.org/10.1016/j.anucene.2018.08.028.
  27. E. Losa, M. Kostal, M. Stefanik, J. Simon, T. Czakoj, Z. Matej, F. Cvachovec, F. Mravec, J. Rataj, L. Sklenka, Validation of the fast neutron field in the radial channel of the VR-1 reactor, J. Nucl. Eng. Radiat. Sci. 7 (2021) 1e9, https://doi.org/10.1115/1.4048906.
  28. H. Choi, R. Firestone, R. Lindstrom, G. Molnar, S.F. Mughabghab, R. Paviotti-Corcuera, Z. Revay, A. Trkov, V. Zerkin, C. Zhou, Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis, STI/PUB/12, International Atomic Energy Agency, Vienna, 2007. https://www.iaea.org/publications/7030/database-of-prompt-gamma-rays-from-slow-neutroncapture-for-elemental-analysis.
  29. M. Kostal, M. Svadlenkova, J. Milcak, The application and comparison of 97Zr and 92Sr in the absolute determination of the contribution of power density and cladding activation in a VVER-1000 Mock-Up on the LR-0 Research Reactor, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 738 (2014) 87-92, https://doi.org/10.1016/J.NIMA.2013.11.107.
  30. T. Czakoj, M. Kostal, Z. Matej, E. Losa, J. Simon, F. Mravec, F. Cvachovec, Measurement of prompt gamma field above the VR-1 water level, EPJ Web Conf. 253 (2021), 04014, https://doi.org/10.1051/epjconf/202125304014.
  31. J. Frybort, P. Suk, F. Fejt, Designing stainless steel reflector at VR-1 training reactor, EPJ Web Conf. 239 (2020) 17009, https://doi.org/10.1051/EPJCONF/202023917009.