DOI QR코드

DOI QR Code

Stress-assisted oxidation behaviour of inconel 52M/316 austenitic stainless-steel dissimilar weld joints in a simulated pressurised water reactor

  • Xu, Youwei (State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology) ;
  • Yang, Binhui (State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology) ;
  • Shi, Yu (State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology)
  • 투고 : 2021.12.15
  • 심사 : 2022.05.02
  • 발행 : 2022.10.25

초록

The stress-assisted oxidation behaviour of Inconel 52 M/316 austenitic stainless-steel (SS) dissimilar weld joints (DMWJ) in a simulated pressurised water reactor environment was investigated. A corrosion galvanic couple formed between the Inconel 52 M and 316 SS due to differences in their nonferrous metal content. The electric field from the corrosion couple attracted metal cations (e.g. Fe2+, Cr3+) to the Inconel 52 M that were deposited as FeCr2O4. An additional corrosion galvanic couple was generated due to variations in the plastic deformation of the DMWJ. The superposition of electric fields from the different couples resulted in ridge-like oxide depositions in the fusion zone.

키워드

과제정보

This work was supported by the Project of the National Natural Science Foundation of China [grant number 52075235].

참고문헌

  1. S.J. Zinkle, G.S. Was, Materials challenges in nuclear energy, Acta Mater. 61 (2013) 735-758. https://doi.org/10.1016/j.actamat.2012.11.004
  2. Y.S. Lim, S.S. Hwang, D.J. Kim, J.Y. Lee, Corrosion behavior of SA508 low alloy steels exposed to aerated boric acid solutions, Nucl. Eng. Technol. 52 (2020) 1222-1230. https://doi.org/10.1016/j.net.2019.11.031
  3. Y.S. Lim, D.J. Kim, S.W. Kim, H.P. Kim, Crack growth and cracking behavior of Alloy 600/182 and Alloy 690/152 welds in simulated PWR primary water, Nucl. Eng. Technol. 51 (2019) 228-237. https://doi.org/10.1016/j.net.2018.09.011
  4. Y. Li, J. Wang, E. Han, C. Yang, Structural, mechanical and corrosion studies of Cr-rich inclusions in 152 cladding of dissimilar metal weld joint, J. Nucl. Mater. 498 (2018) 9-19. https://doi.org/10.1016/j.jnucmat.2017.10.012
  5. W. Wang, X. Cao, Y. Lu, X. Ding, T. Shoji, TEM study on oxide mechanism of the dissimilar welds between 316 stainless steels/Inconel 182 in high temperature and high pressure water, Mater. Char. 131 (2017) 339-347. https://doi.org/10.1016/j.matchar.2017.07.004
  6. G. Li, X. Lu, X. Zhu, J. Huang, L. Liu, Y. Wu, The defects and microstructure in the fusion zone of multipass laser welded joints with Inconel 52M filler wire for nuclear power plants, Opt Laser. Technol. 94 (2017) 97-105. https://doi.org/10.1016/j.optlastec.2017.02.005
  7. E. Rahimi, A. Rafsanjani-Abbasi, A. Imani, S. Hosseinpour, A. Davoodi, Correlation of surface Volta potential with galvanic corrosion initiation sites in solid-state welded Ti-Cu bimetal using AFM-SKPFM, Corros. Sci. 140 (2018) 30-39. https://doi.org/10.1016/j.corsci.2018.06.026
  8. B.O. Okonkwo, H. Ming, Z. Zhang, J. Wang, E. Rahimi, S. Hosseinpour, A. Davoodi, Microscale investigation of the correlation between microstructure and galvanic corrosion of low alloy steel A508 and its welded 309/308L stainless steel overlayer, Corros. Sci. 154 (2019) 49-60. https://doi.org/10.1016/j.corsci.2019.03.027
  9. A. Bautista, J.C. Pomares, M.N. Gonzalez, F. Velasco, Influence of the microstructure of TMT reinforcing bars on their corrosion behavior in concrete with chlorides, Construct. Build. Mater. 229 (2019) 116899. https://doi.org/10.1016/j.conbuildmat.2019.116899
  10. W. Mai, S. Soghrati, New phase field model for simulating galvanic and pitting corrosion processes, Electrochim. Acta 260 (2018) 290-304. https://doi.org/10.1016/j.electacta.2017.12.086
  11. H. Ming, R. Zhu, Z. Zhang, J. Wang, E.H. Han, W. Ke, M. Su, Microstructure, local mechanical properties and stress corrosion cracking susceptibility of an SA508-52M-316LN safe-end dissimilar metal weld joint by GTAW, Mater. Sci. Eng. 669 (2016) 279-290. https://doi.org/10.1016/j.msea.2016.05.101
  12. Y. Xu, H. Jing, L. Xu, Y. Han, L. Zhao, Microstructural evolution and oxidation behaviour of CF8A austenitic stainless steel during corrosion fatigue in a simulated pressurised water reactor environment, Corros. Sci. 163 (2020) 108286. https://doi.org/10.1016/j.corsci.2019.108286
  13. J. Chen, Q. Xiao, Z. Lu, X. Ru, H. Peng, Q. Xiong, H. Li, Characterization of interfacial reactions and oxide films on 316L stainless steel in various simulated PWR primary water environments, J. Nucl. Mater. 489 (2017) 137-149. https://doi.org/10.1016/j.jnucmat.2017.03.029
  14. J. Chen, A. Nurrochman, J. Hong, T.S. Kim, C. Jang, Y. Yi, Comparison of oxide layers formed on the low-cycle fatigue crack surfaces of Alloy 690 and 316 SS tested in a simulated PWR environment, Nucl. Eng. Technol. 51 (2019) 479-489. https://doi.org/10.1016/j.net.2018.10.007
  15. T.H. Lee, K.H. Ryu, H.D. Kim, I.S. Hwang, J.H. Kim, M.H. Lee, S. Choi, Effect of oxide film on ECT detectability of surface IGSCC in laboratory-degraded alloy 600 steam generator tubing, Nucl. Eng. Technol. 51 (2019) 1381-1389. https://doi.org/10.1016/j.net.2019.03.005
  16. T. Moss, W. Kuang, G.S. Was, Stress corrosion crack initiation in Alloy 690 in high temperature water, Curr. Opin. Solid State Mater. Sci. 22 (2018) 16-25. https://doi.org/10.1016/j.cossms.2018.02.001
  17. Z. Shen, D. Du, L. Zhang, S. Lozano-Perez, An insight into PWR primary water SCC mechanisms by comparing surface and crack oxidation, Corros. Sci. 148 (2019) 213-227. https://doi.org/10.1016/j.corsci.2018.12.020
  18. X. Ru, Z. Lu, J. Chen, G. Han, J. Zhang, P. Hu, X. Liang, Effects of iron content in Ni-Cr-xFe alloys and immersion time on the oxide films formed in a simulated PWR water environment, J. Nucl. Mater. 497 (2017) 37-53. https://doi.org/10.1016/j.jnucmat.2017.10.048
  19. X. Ru, J. Ma, Z. Lu, J. Chen, G. Han, J. Zhang, P. Hu, X. Liang, W. Tang, Effects of iron content in Ni-Cr-Fe alloys on the oxide films formed in an oxygenated simulated PWR water environment, J. Nucl. Mater. 509 (2018) 29-42. https://doi.org/10.1016/j.jnucmat.2018.06.014
  20. J. Chen, A. Nurrochman, J. Hong, T.S. Kim, C. Jang, Y. Yi, Comparison of oxide layers formed on the low-cycle fatigue crack surfaces of Alloy 690 and 316 SS tested in a simulated PWR environment, Nucl. Eng. Technol. 51 (2019) 479-489. https://doi.org/10.1016/j.net.2018.10.007
  21. I. Adlakha, B.G. Bazehhour, N.C. Muthegowda, K.N. Solanki, Effect of mechanical loading on the galvanic corrosion behavior of a magnesium-steel structural joint, Corros. Sci. 133 (2018) 300-309. https://doi.org/10.1016/j.corsci.2018.01.038
  22. Z. Cui, Z. Liu, L. Wang, X. Li, C. Du, X. Wang, Effect of plastic deformation on the electrochemical and stress corrosion cracking behavior of X70 steel in nearneutral pH environment, Mater. Sci. Eng. 677 (2016) 259-273. https://doi.org/10.1016/j.msea.2016.09.033
  23. T. Wu, M. Yan, J. Xu, Y. Liu, C. Sun, W. Ke, Mechano-chemical effect of pipeline steel in microbiological corrosion, Corros. Sci. 108 (2016) 160-168. https://doi.org/10.1016/j.corsci.2016.03.011
  24. B. Mingo, R. Arrabal, A. Pardo, E. Matykina, P. Skeldon, 3D study of intermetallics and their effect on the corrosion morphology of rheocast aluminium alloy, Mater. Char. 112 (2016) 122-128. https://doi.org/10.1016/j.matchar.2015.12.006
  25. R. Zhu, J. Wang, Z. Zhang, E. Han, Stress corrosion cracking of fusion boundary for 316L/52M dissimilar metal weld joints in borated and lithiated high temperature water, Corros. Sci. 120 (2017) 219-230. https://doi.org/10.1016/j.corsci.2017.01.024
  26. X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Hoppel, M. Goken, J. Narayan, Y. Zhu, Mechanical properties of copper/bronze laminates: role of interfaces, Acta Mater. 116 (2016) 43-52. https://doi.org/10.1016/j.actamat.2016.06.023
  27. L.P. Kubin, A. Mortensen, Geometrically necessary dislocations and straingradient plasticity: a few critical issues, Scripta Mater. 48 (2003) 119-125. https://doi.org/10.1016/S1359-6462(02)00335-4
  28. H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, Mechanism-based strain gradient plasticity-I. Theory, J. Mech. Phys. Solid. 47 (1999) 1239-1263. https://doi.org/10.1016/S0022-5096(98)00103-3
  29. Z. Chen, Z. Sun, B. Panicaud, Investigation of ductile damage during surface mechanical attrition treatment for TWIP steels using a dislocation density based viscoplasticity and damage models, Mech. Mater. 129 (2019) 279-289. https://doi.org/10.1016/j.mechmat.2018.12.009
  30. Y. Gui, X.B. Meng, Z.J. Zheng, Y. Gao, Critical temperature determination of detectable Cr diffusion enhancement by nanostructure through structural evolution analysis of the oxide films at 25-450℃ on 304 stainless steel, Appl. Surf. Sci. 419 (2017) 512-521. https://doi.org/10.1016/j.apsusc.2017.04.133
  31. J. Huang, X. Wu, E. Han, Electrochemical properties and growth mechanism of passive films on Alloy 690 in high-temperature alkaline environments, Corros. Sci. 52 (2010) 3444-3452. https://doi.org/10.1016/j.corsci.2010.06.016
  32. X. Guo, K. Chen, W. Gao, Z. Shen, L. Zhang, Corrosion behavior of aluminaforming and oxide dispersion strengthened austenitic 316 stainless steel in supercritical water, Corros. Sci. 138 (2018) 297-306. https://doi.org/10.1016/j.corsci.2018.04.026
  33. M. Halvarsson, J.E. Tang, H. Asteman, J.E. Svensson, L.G. Johansson, Microstructural investigation of the breakdown of the protective oxide scale on a 304 steel in the presence of oxygen and water vapour at 600℃, Corros. Sci. 48 (2006) 2014-2035. https://doi.org/10.1016/j.corsci.2005.08.012
  34. S. Wang, Y. Hu, K. Fang, W. Zhang, X. Wang, Effect of surface machining on the corrosion behaviour of 316 austenitic stainless steel in simulated PWR water, Corros. Sci. 126 (2017) 104-120. https://doi.org/10.1016/j.corsci.2017.06.019
  35. H. Ming, Z. Zhang, J. Wang, R. Zhu, J. Ding, J. Wang, E. Han, W. Ke, Effect of surface state on the oxidation behavior of welded 308L in simulated nominal primary water of PWR, Appl. Surf. Sci. 337 (2015) 81-89. https://doi.org/10.1016/j.apsusc.2015.02.066
  36. S. Hu, R. Liu, L. Liu, Y. Cui, E.E. Oguzie, F. Wang, Effect of hydrostatic pressure on the galvanic corrosion of 90/10 Cu-Ni alloy coupled to Ti6Al4V alloy, Corros. Sci. 163 (2020) 108242. https://doi.org/10.1016/j.corsci.2019.108242
  37. E.M. Gutman, Mechanochemistry and Corrosion Prevention of Metals, Science Publication, Beijing, 1989 in Chinese.
  38. C. Ornek, D.L. Engelberg, SKPFM measured Volta potential correlated with strain localisation in microstructure to understand corrosion susceptibility of cold-rolled grade 2205 duplex stainless steel, Corros. Sci. 99 (2015) 164-171. https://doi.org/10.1016/j.corsci.2015.06.035