DOI QR코드

DOI QR Code

The influence of Winkler-Pasternak elastic foundations on the natural frequencies of imperfect functionally graded sandwich beams

  • Avcar, Mehmet (Department of Civil Engineering, Faculty of Engineering, Suleyman Demirel University) ;
  • Hadji, Lazreg (Faculty of Civil Engineering, Ton Duc Thang University) ;
  • Akan, Recep (Department of Civil Engineering, Faculty of Engineering, Suleyman Demirel University)
  • 투고 : 2022.05.07
  • 심사 : 2022.09.18
  • 발행 : 2022.10.10

초록

The present study examines the natural frequencies (NFs) of perfect/imperfect functionally graded sandwich beams (P/IP-FGSBs), which are composed of a porous core constructed of functionally graded materials (FGMs) and a homogenous isotropic metal and ceramic face sheets resting on elastic foundations. To accomplish this, the material properties of the FGSBs are assumed to vary continuously along the thickness direction as a function of the volume fraction of constituents expressed by the modified rule of the mixture, which includes porosity volume fraction represented using four distinct types of porosity distribution models. Additionally, to characterize the reaction of the two-parameter elastic foundation to the Perfect/Imperfect (P/IP) FGSBs, the medium is assumed to be linear, homogeneous, and isotropic, and it is described using the Winkler-Pasternak model. Furthermore, the kinematic relationship of the P/IP-FGSBs resting on the Winkler-Pasternak elastic foundations (WPEFs) is described using trigonometric shear deformation theory (TrSDT), and the equations of motion are constructed using Hamilton's principle. A closed-form solution is developed for the free vibration analysis of P/IP-FGSBs resting on the WPEFs under four distinct boundary conditions (BCs). To validate the new formulation, extensive comparisons with existing data are made. A detailed investigation is carried out for the effects of the foundation coefficients, mode numbers (MNs), porosity volume fraction, power-law index, span to depth ratio, porosity distribution patterns (PDPs), skin core skin thickness ratios (SCSTR), and BCs on the values of the NFs of the P/IP-FGSBs.

키워드

참고문헌

  1. Akbas, S.D. (2018), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013U.
  2. Akgoz, B. and Civalek, O. (2018), "Vibrational characteristics of embedded microbeams lying on a two-parameter elastic foundation in thermal environment", Compos. B. Eng., 150, 68-77. https://doi.org/10.1016/j.compositesb.2018.05.049.
  3. Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2021), "Dynamic stability control of viscoelastic nanocomposite piezoelectric sandwich beams resting on Kerr foundation based on exponential piezoelasticity theory", Eur. J. Mech. A. Solid., 86, 104169. https://doi.org/10.1016/j.euromechsol.2020.104169.
  4. Al-Furjan, M.S.H., Hatami, A., Habibi, M., Shan, L. and Tounsi, A. (2021), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 257, 113150. https://doi.org/10.1016/j.compstruct.2020.113150.
  5. Al-Furjan, M.S.H., Xu, M.X., Farrokhian, A., Jafari, G.S., Shen, X. and Kolahchi, R. (2022), "On wave propagation in piezoelectric-auxetic honeycomb-2D-FGM micro-sandwich beams based on modified couple stress and refined zigzag theories", Wave Random. Complex. Media, 1-25. https://doi.org/10.1080/17455030.2022.2030499.
  6. Al-Saedi, D.S.J., Masood, S.H., Faizan-Ur-Rab, M., Alomarah, A. and Ponnusamy, P. (2018), "Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM", Mater. Des., 144, 32-44. https://doi.org/10.1016/j.matdes.2018.01.059.
  7. Al-Furjan, M.S.H., Yang, Y., Farrokhian, A., Shen, X., Kolahchi, R. and Rajak, D.K. (2021), "Dynamic instability of nanocomposite piezoelectric-leptadenia pyrotechnica rheological elastomer-porous functionally graded materials micro viscoelastic beams at various strain gradient higher-order theories", Polym. Compos., 43(1), 282-298. https://doi.org/10.1002/pc.26373.
  8. Al Rjoub, Y.S. and Hamad, A.G. (2016), "Free vibration of functionally Euler-Bernoulli and Timoshenko graded porous beams using the transfer matrix method", KSCE J. Civil Eng., 21(3), 792-806. https://doi.org/10.1007/s12205-016-0149-6.
  9. Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/sem.2022.81.6.705.
  10. Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. https://doi.org/10.12989/gae.2021.24.1.091.
  11. AlSaid-Alwan, I.H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concrete, 26(3), 285-292. https://doi.org/10.12989/cac.2020.26.3.285.
  12. Amirani, M.C., Khalili, S.M.R. and Nemati, N. (2009), "Free vibration analysis of sandwich beam with FG core using the element free Galerkin method", Compos. Struct., 90(3), 373-379. https://doi.org/10.1016/j.compstruct.2009.03.023.
  13. Asadi-Ghoozhdi, H., Attarnejad, R., Masoodi, A.R. and Majlesi, A. (2022), "Seismic assessment of irregular RC frames with tall ground story incorporating nonlinear soil-structure interaction", Struct., 41, 159-172. https://doi.org/10.1016/j.istruc.2022.05.001.
  14. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  15. Avcar, M., Hadji, L. and Civalek, O. (2021), "Natural frequency analysis of sigmoid functionally graded sandwich beams in the framework of high order shear deformation theory", Compos. Struct., 276, 114564. https://doi.org/10.1016/j.compstruct.2021.114564.
  16. Avila, A.F. (2007), "Failure mode investigation of sandwich beams with functionally graded core", Compos. Struct., 81(3), 323-330. https://doi.org/10.1016/j.compstruct.2006.08.030.
  17. Babaei, H., Eslami, M.R. and Khorshidvand, A.R. (2020), "Thermal buckling and postbuckling responses of geometrically imperfect FG porous beams based on physical neutral plane", J. Therm. Stress., 43(1), 109-131. https://doi.org/10.1080/01495739.2019.1660600.
  18. Bao, T. and Liu, Z. (2020), "Evaluation of Winkler model and Pasternak model for dynamic soil-structure interaction analysis of structures partially embedded in soils", Int. J. Geomech., 20(2), 04019167. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001519.
  19. Bashiri, A.H., Akbas, S.D., Abdelrahman, A.A., Assie, A., Eltaher, M.A. and Mohamed, E.F. (2021), "Vibration of multilayered functionally graded deep beams under thermal load", Geomech. Eng., 24(6), 545-557. https://doi.org/10.12989/gae.2021.24.6.545.
  20. Bekkaye, T.H.L., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A. and Al-Zahrani, M.M. (2020), "Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory", Comput. Concrete, 26(5), 439-450. https://doi.org/10.12989/cac.2020.26.5.439.
  21. Benahmed, A., Houari, M.S.A., Benyoucef, S., Belakhdar, K. and Tounsi, A. (2017), "A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation", Geomech. Eng., 12(1), 9-34. https://doi.org/10.12989/gae.2017.12.1.009.
  22. Bouafia, K., Selim, M.M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A., Bedia, E.A.A. and Tounsi, A. (2021), "Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model", Steel Compos. Struct., 41(4), 487-50.3 https://doi.org/10.12989/scs.2021.41.4.487.
  23. Bouiadjra, R.B., Bachiri, A., Benyoucef, S., Fahsi, B. and Bernard, F. (2020), "An investigation of the thermodynamic effect on the response of FG beam on elastic foundation", Struct. Eng. Mech., 76(1), 115-127. https://doi.org/10.12989/sem.2020.76.1.115.
  24. Bowles, J.E. (1988), Foundation Analysis and Design, McGraw Hill, New York.
  25. Calio, I. and Greco, A. (2013), "Free vibrations of Timoshenko beam-columns on Pasternak foundations", J. Vib. Control, 19(5), 686-696. https://doi.org/10.1177/1077546311433609.
  26. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  27. Chen, D., Yang, J. and Kitipornchai, S. (2019), "Buckling and bending analyses of a novel functionally graded porous plate using Chebyshev-Ritz method", Arch. Civil Mech. Eng., 19(1), 157-170. https://doi.org/10.1016/j.acme.2018.09.004
  28. Civalek, O. (2013), "Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches", Compos. B Eng., 50, 171-179. https://doi.org/10.1016/j.compositesb.2013.01.027.
  29. Civalek, O. and Acar, M.H. (2007), "Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations", Int. J. Press. Vessel. Pip., 84(9), 527-535. https://doi.org/10.1016/j.ijpvp.2007.07.001.
  30. Daikh, A.A., Guerroudj, M., El Adjrami, M. and Megueni, A. (2019), "Thermal buckling of functionally graded sandwich beams", Adv. Mat. Res., 1156, 43-59. https://doi.org/10.4028/www.scientific.net/AMR.1156.43.
  31. Das, B.M. and Sivakugan, N. (2018), Principles of Foundation Engineering, Cengage learning
  32. Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", J. Appl. Mech., 50(3), 609-614. https://doi.org/10.1115/1.3167098.
  33. Djedid, I.K., Benachour, A., Houari, M.S.A., Tounsi, A. and Ameur, M. (2014), "A n-order four variable refined theory for bending and free vibration of functionally graded plates", Steel Compos. Struct., 17(1), 21-46. https://doi.org/10.12989/scs.2014.17.1.021.
  34. Du, M.J., Liu, J., Ye, W.B., Yang, F. and Lin, G. (2022), "A new semi-analytical approach for bending, buckling and free vibration analyses of power law functionally graded beams", Struct. Eng. Mech., 81(2), 179-194. https://doi.org/10.12989/sem.2022.81.2.179.
  35. Dutta, S.C. and Roy, R. (2002), "A critical review on idealization and modeling for interaction among soil-foundation-structure system", Comput. Struct., 80(20-21), 1579-1594. https://doi.org/10.1016/S0045-7949(02)00115-3.
  36. El-Hassar, S.M., Benyoucef, S., Heireche, H. and Tounsi, A. (2016), "Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory", Geomech. Eng., 10(3), 357-386. https://doi.org/10.12989/gae.2016.10.3.357.
  37. Elmeichea, N., Abbadb, H., Mechabc, I. and Bernard, F. (2020), "Free vibration analysis of functionally graded beams with variable cross-section by the differential quadrature method based on the nonlocal theory", Struct. Eng. Mech., 75(6), 737-746. https://doi.org/10.12989/sem.2020.75.6.737.
  38. Farrokh, M. and Taharpur, M. (2021), "Optimization of porosity distribution of FGP beams considering buckling strength", Struct. Eng. Mech., 79(6), 711-722. https://doi.org/10.12989/sem.2021.79.6.711.
  39. Fouda, N., El-Midany, T. and Sadoun, A.M. (2017), "Bending, buckling and vibration of a functionally graded porous beam using finite elements", J. Appl. Comput. Mech., 3(4), 274-282. https://doi.org/10.22055/Jacm.2017.21924.1121.
  40. Galeban, M.R., Mojahedin, A., Taghavi, Y. and Jabbari, M. (2016), "Free vibration of functionally graded thin beams made of saturated porous materials", Steel Compos. Struct., 21(5), 999-1016. https://doi.org/10.12989/scs.2016.21.5.999.
  41. Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M., Hussain, M. and Mahmoud, S.R. (2021), "Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation", Steel Compos. Struct., 38(1), 1-15. https://doi.org/10.12989/scs.2021.38.1.001.
  42. Hadji, L. and Avcar, M. (2021), "Free vibration analysis of FG porous sandwich plates under various boundary conditions", J. Appl. Comput. Mech., 7(2), 505-519. https://doi.org/10.22055/Jacm.2020.35328.2628.
  43. Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Adv. Nano. Res., 10(3), 281-293. https://doi.org/10.12989/anr.2021.10.3.281.
  44. Hamed, M.A., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.
  45. Han, C., Li, Y., Wang, Q., Wen, S., Wei, Q., Yan, C., Hao, L., Liu, J. and Shi, Y. (2018), "Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants", J Mech Behav Biomed Mater. 80, 119-127. https://doi.org/10.1016/j.jmbbm.2018.01.013.
  46. He, S.Y., Zhang, Y., Dai, G. and Jiang, J.Q. (2014), "Preparation of density-graded aluminum foam", Mater. Sci. Eng.: A, 618, 496-499. https://doi.org/10.1016/j.msea.2014.08.087.
  47. Hebali, H., Chikh, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Hussain, M. and Tounsi, A. (2022), "Effect of the variable visco-Pasternak foundations on the bending and dynamic behaviors of FG plates using integral HSDT model", Geomech. Eng., 28(1), 49-64. https://doi.org/10.12989/gae.2022.28.1.049.
  48. Hetenyi, M. (1946), Beams on Elastic Foundation; Theory with Applications in the Fields of Civil and Mechanical Engineering, University of Michigan Press, Ann Arbor.
  49. Hong, C.Q., Du, J.C., Liang, J., Zhang, X.H. and Han, J.C. (2011), "Functionally graded porous ceramics with dense surface layer produced by freeze-casting", Ceram. Int., 37(8), 3717-3722. https://doi.org/10.1016/j.ceramint.2011.04.119.
  50. Jia, J. and Jia (2018), Soil Dynamics and Foundation Modeling, Springer.
  51. Kahya, V. and Turan, M. (2018), "Vibration and stability analysis of functionally graded sandwich beams by a multi-layer finite element", Compos. B Eng., 146, 198-212. https://doi.org/10.1016/j.compositesb.2018.04.011.
  52. Kerr, A.D. (1964), "Elastic and viscoelastic foundation models", J. Appl. Mech., 31(3), 491-498. https://doi.org/10.1115/1.3629667.
  53. Kieback, B., Neubrand, A. and Riedel, H. (2003), "Processing techniques for functionally graded materials", Mater. Sci. Eng.: A, 362(1-2), 81-105. https://doi.org/10.1016/S0921-5093(03)00578-1.
  54. Kilicer, S., Ozgan, K. and Daloglu, A. (2018), "Effects of soil structure interaction on behavior of reinforced concrete structures", J. Struct. Eng. Appl. Mech., 1(1), 28-33. https://doi.org/10.31462/jseam.2018.01028033.
  55. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  56. Koizumi, M. (1997), "FGM activities in Japan", Compos. B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
  57. Kolahchi, R., Bidgoli, A.M.M. and Heydari, M.M. (2015), "Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium", Struct. Eng. Mech., 55(5), 1001-1014. https://doi.org/10.12989/sem.2015.55.5.1001.
  58. Kolahchi, R., Keshtegar, B. and Trung, N.T. (2021), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", J Sandw Struct Mater., 24(1), 643-662. https://doi.org/10.1177/10996362211020388.
  59. Liu, G., Wu, S., Shahsavari, D., Karami, B. and Tounsi, A. (2022), "Dynamics of imperfect inhomogeneous nanoplate with exponentially-varying properties resting on viscoelastic foundation", Eur. J. Mech. A. Solid., 95, 104649. https://doi.org/10.1016/j.euromechsol.2022.104649.
  60. Madenci, E. (2021), "Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM", Steel Compos. Struct., 39(5), 493-509. https://doi.org/10.12989/scs.2021.39.5.493.
  61. Madenci, E. and Ozkilic, Y.O. (2021), "Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches", Steel Compos. Struct., 40(2), 157-173. https://doi.org/10.12989/scs.2021.40.2.157.
  62. Matsunaga, H. (1999), "Vibration and buckling of deep beam-columns on two-parameter elastic foundations", J. Sound Vib., 228(2), 359-376. https://doi.org/10.1006/jsvi.1999.2415.
  63. Mechab, I., El Meiche, N. and Bernard, F. (2017), "Analytical study for the development of a new warping function for high order beam theory", Compos. B Eng., 119, 18-31. https://doi.org/10.1016/j.compositesb.2017.03.006.
  64. Merzoug, M., Bourada, M., Sekkal, M., Abir, A.C., Chahrazed, B., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
  65. Moniri Bidgoli, A.M., Daneshmehr, A.R. and Kolahchi, R. (2014), "Analytical bending solution of fully clamped orthotropic rectangular plates resting on elastic foundations by the finite integral transform method", J. Appl. Comput. Mech., 1(2), 52-58.
  66. Mu, L. and Zhao, G.P. (2016), "Fundamental frequency analysis of sandwich beams with functionally graded face and metallic foam core", Shock Vib., 2016, Article ID 3287645. https://doi.org/10.1155/2016/3287645.
  67. Naebe, M. and Shirvanimoghaddam, K. (2016), "Functionally graded materials: A review of fabrication and properties", Appl. Mater. Today, 5, 223-245. https://doi.org/10.1016/j.apmt.2016.10.001.
  68. Nguyen, T.K. and Nguyen, B.D. (2015), "A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams", J. Sandw. Struct. Mater., 17(6), 613-631. https://doi.org/10.1177/1099636215589237.
  69. Nguyen, T.K., Nguyen, T.T.P., Vo, T.P. and Thai, H.T. (2015), "Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory", Compos. B Eng., 76, 273-285. https://doi.org/10.1016/j.compositesb.2015.02.032.
  70. Nguyen, T.K., Vo, T.P., Nguyen, B.D. and Lee, J. (2016), "An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory", Compos. Struct., 156, 238-252. https://doi.org/10.1016/j.compstruct.2015.11.074.
  71. Pandey, S. and Pradyumna, S. (2021), "Thermal shock response of porous functionally graded sandwich curved beam using a new layerwise theory", Mech. Bas. Des. Struct. Mach., 1-26. https://doi.org/10.1080/15397734.2021.1888297.
  72. Pasternak, P.L. (1954), On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants, Gosudarstvenrwe Izdatelslvo Literaturi po Stroitclstvu i Arkhitekture, Moscow. (in Russian)
  73. Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R. and Tounsi, A. (2020), "A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., 22(2), 119-132. https://doi.org/10.12989/gae.2020.22.2.119.
  74. Ramteke, P.M., Panda, S.K. and Patel, B. (2022), "Nonlinear eigenfrequency characteristics of multi-directional functionally graded porous panels", Compos. Struct., 279, 114707. https://doi.org/10.1016/j.compstruct.2021.114707.
  75. Ramteke, P.M., Patel, B. and Panda, S.K. (2021), "Nonlinear eigenfrequency prediction of functionally graded porous structure with different grading patterns", Wave Random. Complex. Media, 1-19. https://doi.org/10.1080/17455030.2021.2005850.
  76. Ramteke, P.M., Sharma, N., Choudhary, J., Hissaria, P. and Panda, S.K. (2021), "Multidirectional grading influence on static/dynamic deflection and stress responses of porous FG panel structure: a micromechanical approach", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-021-01449-w.
  77. Rao, N.S.V.K. (2010), Foundation Design: Theory and Practice, John Wiley & Sons.
  78. Rao, S.S. (2019), Vibration of Continuous Systems, John Wiley & Sons.
  79. Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells Theory and Analysis, CRC Press.
  80. Rezaiee-Pajand, M. and Masoodi, A.R. (2016), "Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections", J. Vib. Control, 24(9), 1787-1808. https://doi.org/10.1177/1077546316668932.
  81. Rezaiee-Pajand, M. and Masoodi, A.R. (2022), "Hygro-thermo-elastic nonlinear analysis of functionally graded porous composite thin and moderately thick shallow panels", Mech. Adv. Mater. Struct., 29(4), 594-612. https://doi.org/10.1080/15376494.2020.1780524.
  82. Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165.
  83. Rezaiee-Pajand, M., Mokhtari, M. and Masoodi, A.R. (2018), "Stability and free vibration analysis of tapered sandwich columns with functionally graded core and flexible connections", CEAS Aeronaut. J., 9(4), 629-648. https://doi.org/10.1007/s13272-018-0311-6.
  84. Rezaiee-Pajand, M., Rajabzadeh-Safaei, N. and Masoodi, A.R. (2020), "An efficient curved beam element for thermo-mechanical nonlinear analysis of functionally graded porous beams", Struct., 28, 1035-1049. https://doi.org/10.1016/j.istruc.2020.08.038.
  85. Saidi, H., Tounsi, A. and Bousahla, A.A. (2016), "A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations", Geomech. Eng., 11(2), 289-307. https://doi.org/10.12989/gae.2016.11.2.289.
  86. Sayyad, A.S. and Ghugal, Y.M. (2018), "An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation", Aircraft Spacecraft Sci., 5(6), 671-689. https://doi.org/10.12989/aas.2018.5.6.671.
  87. Sayyad, A.S. and Ghugal, Y.M. (2019), "A sinusoidal beam theory for functionally graded sandwich curved beams", Compos. Struct., 226, 111246-111246. https://doi.org/10.1016/j.compstruct.2019.111246.
  88. Sayyad, A.S. and Ghugal, Y.M. (2021), "A unified five-degree-of-freedom theory for the bending analysis of softcore and hardcore functionally graded sandwich beams and plates", J. Sandw. Struct. Mater., 23(2), 473-506. https://doi.org/10.1177/1099636219840980.
  89. Selvadurai, A.P.S. (1979), Elastic Analysis of Soil-Foundation Interaction, Elsevier.
  90. Shen, H.S. (2009), Functionally Graded Materials: Nonlinear Analysis of Plates and Shells, CRC Press.
  91. Shen, H.S. (2011), "A novel technique for nonlinear analysis of beams on two-parameter elastic foundations", Int. J. Struct. Stab. Dyn., 11(6), 999-1014. https://doi.org/10.1142/S0219455411004440.
  92. Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.
  93. Simsek, M. and Al-shujairi, M. (2017), "Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads", Compos. B. Eng., 108, 18-34. https://doi.org/10.1016/j.compositesb.2016.09.098.
  94. Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015.
  95. Songsuwan, W., Pimsarn, M. and Wattanasakulpong, N. (2018), "Dynamic responses of functionally graded sandwich beams resting on elastic foundation under harmonic moving loads", Int. J. Struct. Stab. Dyn., 18(09), 1850112. https://doi.org/10.1142/S0219455418501122.
  96. Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030.
  97. Tahir, S.I., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2022), "The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT", Steel Compos. Struct., 42(4), 501-511. https://doi.org/10.12989/scs.2022.42.4.501.
  98. Thieme, M., Wieters, K.P., Bergner, F., Scharnweber, D., Worch, H., Ndop, J., Kim, T.J. and Grill, W. (2001), "Titanium powder sintering for preparation of a porous functionally graded material destined for orthopaedic implants", J. Mater. Sci. Mater. Med., 12(3), 225-231. https://doi.org/10.1023/a:1008958914818.
  99. Tossapanon, P. and Wattanasakulpong, N. (2016), "Stability and free vibration of functionally graded sandwich beams resting on two-parameter elastic foundation", Compos. Struct., 142, 215-225. https://doi.org/10.1016/j.compstruct.2016.01.085.
  100. Trinh, L.C., Vo, T.P., Osofero, A.I. and Lee, J. (2016), "Fundamental frequency analysis of functionally graded sandwich beams based on the state space approach", Compos. Struct., 156, 263-275. https://doi.org/10.1016/j.compstruct.2015.11.010.
  101. Van Vinh, P. and Tounsi, A. (2021), "The role of spatial variation of the nonlocal parameter on the free vibration of functionally graded sandwich nanoplates", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01475-8.
  102. Venkataraman, S. and Sankar, B.V. (2003), "Elasticity solution for stresses in a sandwich beam with functionally graded core", AIAA J., 41(12), 2501-2505. https://doi.org/10.2514/2.685341T.
  103. Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), "Static behaviour of functionally graded sandwich beams using a quasi-3D theory", Compos. B Eng., 68, 59-74. https://doi.org/10.1016/j.compositesb.2014.08.030.
  104. Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J.H. (2015), "A quasi-3D theory for vibration and buckling of functionally graded sandwich beams", Compos. Struct., 119, 1-12. https://doi.org/10.1016/j.compstruct.2014.08.006.
  105. Vo, T.P., Thai, H.T., Nguyen, T.K., Maheri, A. and Lee, J. (2014), "Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory", Eng. Struct., 64, 12-22. https://doi.org/10.1016/j.engstruct.2014.01.029.
  106. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  107. Wattanasakulpong, N., Chaikittiratana, A. and Pornpeerakeat, S. (2018), "Chebyshev collocation approach for vibration analysis of functionally graded porous beams based on third-order shear deformation theory", Acta Mech. Sin., 34(6), 1124-1135. https://doi.org/10.1007/s10409-018-0770-3.
  108. Winkler, E. (1867), Die Lehre von der Elasticitaet und Festigkeit, Dominicus, Prag.
  109. Wu, H.L., Yang, J. and Kitipornchai, S. (2020), "Mechanical analysis of functionally graded porous structures: A review", Int. J. Struct. Stab. Dyn., 20(13), 2041015. https://doi.org/10.1142/S0219455420410151.
  110. Xiao, H., Yan, K.M. and She, G.L. (2021), "Study on the characteristics of wave propagation in functionally graded porous square plates", Geomech. Eng., 26(6), 607-615. https://doi.org/10.12989/gae.2021.26.6.607.
  111. Yahiaoui, M., Tounsi, A., Fahsi, B., Bouiadjra, R.B. and Benyoucef, S. (2018), "The role of micromechanical models in the mechanical response of elastic foundation FG sandwich thick beams", Struct. Eng. Mech., 68(1), 53-66. https://doi.org/10.12989/sem.2018.68.1.053.
  112. Yokoyama, T. (1996), "Vibration analysis of Timoshenko beam-columns on two-parameter elastic foundations", Comput. Struct., 61(6), 995-1007. https://doi.org/10.1016/0045-7949(96)00107-1.
  113. Zaitoun, M.W., Chikh, A., Tounsi, A., Sharif, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021), "An efficient computational model for vibration behavior of a functionally graded sandwich plate in a hygrothermal environment with viscoelastic foundation effects", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01498-1.
  114. Zhou, C.C., Wang, P. and Li, W. (2011), "Fabrication of functionally graded porous polymer via supercritical CO2 foaming", Compos. B Eng., 42(2), 318-325. https://doi.org/10.1016/j.compositesb.2010.11.001.
  115. Zouatnia, N., Hadji, L. and Kassoul, A. (2018), "An efficient and simple refined theory for free vibration of functionally graded plates under various boundary conditions", Geomech. Eng., 16(1), 1-9. https://doi.org/10.12989/gae.2018.16.1.001.