DOI QR코드

DOI QR Code

Electromagnetic torque and reactive torque control of induction motor drives to improve vehicle variable flux operation and torque response

  • Yang, Anxin (School of Electrical Engineering, Guangxi University) ;
  • Lu, Ziguang (School of Electrical Engineering, Guangxi University)
  • Received : 2021.12.28
  • Accepted : 2022.05.25
  • Published : 2022.10.20

Abstract

This paper investigates the decoupling and fast torque response for induction motor drives during vehicle operation with variable flux. A torque control method considering flux transient information is proposed, which takes the electromagnetic torque and reactive torque as state variables for modeling and feedback linearization control. Since the electromagnetic torque is aligned with the active power, and the reactive torque is aligned with the reactive power and perpendicular to the electromagnetic torque, the stator dq-axis current control of the field-oriented control (FOC) is replaced by the simultaneous control of the electromagnetic torque and reactive torque. The physical concept of the inner loop changes from the current to the torque, and the modulation signals from the voltage-type to the power-type. This strategy improves the decoupling performance under variable flux, and the fast response capability of the torque. In addition, it eliminates the complex rotation coordinate transformation. A comparative experiment was carried out between the proposed method and the FOC. Both methods have good steady-state performance. However, the proposed method has better torque response and decoupling.

Keywords

Acknowledgement

This work was supported by the key project of Guangxi Natural Science Foundation: Research on Closed-loop Stability and Performance Improvement Method of Model Predictive Control for Induction Motor, 2018GXNSFDA138008.

References

  1. Thike, R., Pillay, P.: Characterization of a variable flux machine for transportation using a vector-controlled drive. IEEE Trans. Transport. Electrific. 4(2), 494-505 (2018) https://doi.org/10.1109/TTE.2017.2788200
  2. El-Taweel, N.A., Khani, H., Farag, H.E.Z.: Analytical size estimation methodologies for electrified transportation fueling infrastructures using publicdomain market data. IEEE Trans. Transport. Electrific. 5(3), 840-851 (2019) https://doi.org/10.1109/TTE.2019.2927802
  3. Pellegrino, G., Vagati, A., Boazzo, B., Guglielmi, P.: Comparison of induction and pm synchronous motor drives for ev application including design examples. IEEE Trans. Ind. Appl. 48(6), 2322-2332 (2012) https://doi.org/10.1109/TIA.2012.2227092
  4. Muduli, U.R., Beig, A.R., Jaafari, K.A., Alsawalhi, J.Y., Behera, R.K.: Interrupt-free operation of dual-motor four-wheel drive electric vehicle under inverter failure. IEEE Trans. Transport. Electrific. 7(1), 329-338 (2021) https://doi.org/10.1109/TTE.2020.2997354
  5. Guzinski, J., Abu-Rub, H., Diguet, M., Krzeminski, Z., Lewicki, A.: Speed and load torque observer application in high-speed train electric drive. IEEE Trans. Ind. Electron. 57(2), 565-574 (2010) https://doi.org/10.1109/TIE.2009.2029582
  6. Blaschke, F.: The principle of field orientation as applied to the new transvector closed loop control system for rotating-field machines. Siemens Rev. 34, 162-165 (1972)
  7. Takahashi, I., Noguchi, T.: A new quick-response and high-efficiency control strategy of an induction motor. IEEE Trans. Ind. Appl. IA-22, 820-827 (1986) https://doi.org/10.1109/TIA.1986.4504799
  8. Foo, G.H.B., Zhang, X.: Constant switching frequency based direct torque control of interior permanent magnet synchronous motors with reduced ripples and fast torque dynamics. IEEE Trans. Power Electron. 31(9), 6485-6493 (2016) https://doi.org/10.1109/TPEL.2015.2503292
  9. Alsofyani, I.M., Bak, Y., Lee, K.-B.: Fast torque control and minimized sector-flux droop for constant frequency torque controller based dtc of induction machines. IEEE Trans. Power Electron. 34(12), 12141-12153 (2019) https://doi.org/10.1109/TPEL.2019.2908631
  10. Attaianese, C., Monaco, M., Di, S.I., Tomasso, G.: A variational approach to mtpa control of induction motor for evs range optimization. IEEE Trans. Veh. Technol. 69(7), 7014-7025 (2020) https://doi.org/10.1109/TVT.2020.2983908
  11. Naxin, C., Chenghui, Z., Fengtao, S.: Study on efficiency optimization and high response control of induction motor. Proc. CSEE 25(11), 118-123 (2005)
  12. Marino, R., Peresada, S., Valigi, P.: Adaptive inputoutput linearizing control of induction motors. IEEE Trans. Autom. Control. 38(2), 208-221 (1993) https://doi.org/10.1109/9.250510
  13. Lu, Z., Zhang, R., Hu, L., Gan, L., Lin, J., Gong, P.: Model predictive control of induction motor based on amplitude-phase motion equation. IET Power Electron. 12(9), 2400-2406 (2019) https://doi.org/10.1049/iet-pel.2019.0093
  14. Krzeminski, Z.: Nonlinear control of induction motor. In: 10th IFAC World Congress, pp. 357-362 (1987)
  15. Marino, R., Peresada, S., Tomei, P.: Output feedback control of current-fed induction motors with unknown rotor resistance. IEEE Trans. Control Syst. Technol. 4(4), 336-347 (1996) https://doi.org/10.1109/87.508882
  16. Sorchini, Z., Krein, P.T.: Formal derivation of direct torque control for induction machines. IEEE Trans. Power Electron. 21(5), 1428-1436 (2006) https://doi.org/10.1109/TPEL.2006.882086
  17. Zhong Q.: Power Electronics-Enabled Autonomous Power Systems: Next Generation Smart Grids. (2020)
  18. Xu, X., Mathur, R.M., Jiang, J., Rogers, G.J., Kundur, P.: Modeling effects of system frequency variations in induction motor dynamics using singular perturbations. IEEE Trans. Power Syst. 15(2), 764-770 (2000)
  19. Jardn-Kojakhmetov, H., Scherpen, J.M.A.: Model order reduction and composite control for a class of slow-fast systems around a non-hyperbolic point. IEEE Control. Syst. Lett. 1(1), 68-73 (2017) https://doi.org/10.1109/LCSYS.2017.2703983
  20. Holtz, J.: Sensorless control of induction motor drives. Proc. IEEE 90(8), 1359-1394 (2002) https://doi.org/10.1109/JPROC.2002.800726
  21. Forestieri, J.N., Farasat, M., Trzynadlowski, A.M.: Indirect realand reactive-power control of induction motor drives. IEEE J. Emerg. Sel. Top. Power Electron. 6(4), 2109-2125 (2018) https://doi.org/10.1109/JESTPE.2018.2796440
  22. Aller, J.M., Bueno, A., Paga, T.: Power system analysis using space-vector transformation. IEEE Trans. Power Syst. 17(4), 957-965 (2002) https://doi.org/10.1109/TPWRS.2002.804995
  23. Chiassion, J.N.: Modeling and High Performance Control of Electric Machines. IEEE Press Series on Power Engineering, New York (2005)