DOI QR코드

DOI QR Code

Proper flying capacitor selection for performance enhancement of five-level hybrid active neutral-point-clamped inverters

  • Hakami, Samer Saleh (Department of Electrical and Computer Engineering, Ajou University) ;
  • Lee, Kyo-Beum (Department of Electrical and Computer Engineering, Ajou University)
  • Received : 2022.05.18
  • Accepted : 2022.08.11
  • Published : 2022.10.20

Abstract

Flying capacitors (FCs) are very important in multilevel inverter systems when it comes to synthesizing additional voltage levels for various medium-voltage industrial applications, including renewable energy, motor drives, and power transmission. In particular, they are responsible for forming the five-level output pole voltages in five-level hybrid active neutral-point-clamped (ANPC) topologies. This is only possible when the FCs reach their reference values (i.e., 25% of the DC-link value). When a five-level hybrid ANPC inverter operates in the high-frequency (HF) range, the output three-phase current waveforms are less distorted when compared to the low-frequency (LF) performance. Instantaneously achieving a five-level output pole voltage during HF operation is a challenging task. This is due to the large capacitance of some existing types of FCs. In this study, a novel analysis of the effects of a FC on the performance of a five-level hybrid ANPC inverter is presented with simulation and experimental validations. Film capacitors significantly enhanced system performance when compared to electrolytic capacitors due to their many advantageous features, including the ability to charge and discharge quickly during HF operation. In addition, the total harmonic distortion of the output pole voltage is significantly suppressed. Consequently, the size of the required filter can be reduced. Therefore, the proposed system is highly desirable for various industrial applications.

Keywords

Acknowledgement

This work was supported by Korea Electric Power Corporation, the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. R21XO01-11 and No. 20206910100160).

References

  1. Kouro, S., et al.: Recent advances and industrial applications of multilevel converters. IEEE Trans. Ind. Electron. 57(8), 2553-2580 (2010) https://doi.org/10.1109/TIE.2010.2049719
  2. Abu-Rub, H., Holtz, J., Rodriguez, J., Ge, B.: Medium-voltage multilevel converters-state of the art, challenges, and requirements in industrial applications. IEEE Trans. Ind. Electron. 57(8), 2581-2596 (2010) https://doi.org/10.1109/TIE.2010.2043039
  3. Rodriguez, J., Bernet, S., Steimer, P., Lizama, I.: A survey on neutral-point-clamped inverters. IEEE Trans. Ind. Electron. 57(7), 2219-2230 (2010) https://doi.org/10.1109/TIE.2009.2032430
  4. Sathyaseelan, B., Vijay Shankar, S., Suresh, K., et al.: Design and implementation of comprehensive converter. J. Electr. Eng. Technol. 16, 3093-3101 (2021) https://doi.org/10.1007/s42835-021-00832-3
  5. Dwivedi, A., Pahariya, Y.: Design and analysis of hybrid multilevel inverter for asymmetrical input voltages. J. Electr. Eng. Technol. 16, 3025-3036 (2021) https://doi.org/10.1007/s42835-021-00814-5
  6. Lee, K.-B., Lee, J.-S.: Reliability improvement technology for power converters. Springer, Singapore (2017)
  7. Guan, Q., et al.: An extremely high efficient three-level active neutral-point-clamped converter comprising SiC and Si hybrid power stages. IEEE Trans. Power Electron. 33(10), 8341-8352 (2018) https://doi.org/10.1109/TPEL.2017.2784821
  8. Song, M.-G., Kim, S.-M., Lee, K.-B.: Independent switching technique to remove abnormal output voltage in hybrid active NPC inverters. J. Power Electron 21, 85-93 (2021) https://doi.org/10.1007/s43236-020-00170-z
  9. Halabi, L.M., Alsofyani, I.M., Lee, K.-B.: Hardware implementation for hybrid active NPC converters using FPGA-based dual pulse width modulation. J. Power Electron 21, 1669-1679 (2021) https://doi.org/10.1007/s43236-021-00305-w
  10. Sivasubramanian, M., Boopathi, C.S.: A switched capacitor based seven level active neutral point clamped (ANPC) inverter topology with reduced switching devices. J. Electr. Eng. Technol. 16, 3103-3112 (2021) https://doi.org/10.1007/s42835-021-00844-z
  11. Jo, H.-R., Kim, Y.-J., Lee, K.-B.: LCL-Filter design based on modulation index for grid-connected three-level hybrid ANPC inverters. J. Electr. Eng. Technol. 16, 1517-1525 (2021) https://doi.org/10.1007/s42835-021-00703-x
  12. P Barbosa P Steimer J Steinke L Meysenc M Winkelnkemper N Celanovic 2005 Active neutral-point-clamped (ANPC) multilevel converter technology Proc Eur Conf Power Electron. Appl 1 10
  13. F Kieferndorf M Basler LA Serpa JH Fabian A Coccia GA Scheuer 2010 A new medium voltage drive system based on ANPC-5L technology Proc Int Conf Ind Technol. 643 649
  14. Jiang, L., et al.: SVPWM algorithm for five-level active-neutralpoint- clamped H-bridge inverters. J. Power Electron. 21, 1123-1134 (2021) https://doi.org/10.1007/s43236-021-00259-z
  15. Zhou, D., Ding, L., Li, Y.: Two-stage optimization-based model predictive control of 5L-ANPC converter-fed PMSM drives. IEEE Trans. Ind. Electron. 68(5), 3739-3749 (2021) https://doi.org/10.1109/TIE.2020.2984436
  16. Narimani, M., Wu, B., Zargari, N.R.: A novel five-level voltage source inverter with sinusoidal pulse width modulator for medium-voltage applications. IEEE Trans. Power Electron. 31(3), 1959-1967 (2016) https://doi.org/10.1109/TPEL.2015.2440656
  17. Dekka, A., Narimani, M.: Capacitor voltage balancing and current control of a five-level nested neutral-point-clamped converter. IEEE Trans. Power Electron. 33(12), 10169-10177 (2018) https://doi.org/10.1109/TPEL.2018.2810818
  18. Hafez, A.A., Mahmoud, A.A., Yousef, A.M.: Robust and intelligent control for single-stage grid-connected modular multilevel converter in PV applications. J. Electr. Eng. Technol. 16, 917-931 (2021) https://doi.org/10.1007/s42835-020-00639-8
  19. Wang, K., Zheng, Z., Xu, L., Li, Y.: An optimized carrier-based PWM method and voltage balancing control for five-level ANPC converters. IEEE Trans. Ind. Electron. 67(11), 9120-9132 (2020) https://doi.org/10.1109/TIE.2019.2956370
  20. Pulikanti, S., Agelidis, V.: Hybrid flying-capacitor-based active neutral-point-clamped five-level converter operated with SHEPWM. IEEE Trans. Ind. Electron. 58(10), 4643-4653 (2011) https://doi.org/10.1109/TIE.2011.2106098
  21. Shukla, A., Ghosh, A., Joshi, A.: Natural balancing of flying capacitor voltages in multicell inverter under PD carrier-based. IEEE Trans. Power Electron. 26(6), 1682-1693 (2011) https://doi.org/10.1109/TPEL.2010.2089807
  22. Ghias, A.M.Y.M., Pou, J., Ciobotaru, M., Agelidis, V.G.: Voltage balancing method using phase-shifted PWM for the flying capacitor multilevel. IEEE Trans. Power Electron. 29(9), 4521-4531 (2014) https://doi.org/10.1109/TPEL.2013.2285387
  23. Wang, K., Li, Y.D., Zheng, Z.D., Xu, L., Ma, H.W.: Self-precharge of floating capacitors in a five-level ANPC inverter. Proc. 7th. Power Electron. Motion Control Conf. 3, 1776-1780 (2012)
  24. Terzulli, G. 2010. Film technology to replace electrolytic technology in wind power applications. AVX Tech. Note
  25. Kim, S.-H. 2017 Electric motor control. DC, AC, and BLDC motors. Elsevier
  26. Sayyad, J., Nasikkar, P., Singh, A.P., Ozana, S.: Capacitive loadbased smart OTF for high power rated SPV module. Energies 14, 788 (2021) https://doi.org/10.3390/en14030788
  27. Streibl, M., Karmazin, R., Moos, R.: Materials and applications of polymer films for power capacitors with special respect to nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 25(6), 2429-2442 (2018) https://doi.org/10.1109/TDEI.2018.007392
  28. Abdennadher, K., Venet, P., Rojat, G., Retif, J.-M.: A real time predictive maintenance system of aluminum electrolytic capacitors used in uninterrupted power supplies. Proc. IEEE Ind. Appl. Soc. Conf. 46(1), 1644-1652 (2008)
  29. KEMET 2021 Screw terminal aluminum electrolytic capacitors. ALS30/31 datasheet
  30. KEMET 2022 Printed circuit board mount power film capacitors. C4AQ datasheet.