DOI QR코드

DOI QR Code

석유계 잔사유 기반 음극재 제조 및 그 전기화학적 특성

Fabrication and the Electrochemical Characteristics of Petroleum Residue-Based Anode Materials

  • 김대섭 (충남대학교 응용화학공학과) ;
  • 임채훈 (충남대학교 응용화학공학과) ;
  • 김석진 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Kim, Daesup (Department of Applied Chemistry and Chemical Engineering, Chungnam National University) ;
  • Lim, Chaehun (Department of Applied Chemistry and Chemical Engineering, Chungnam National University) ;
  • Kim, Seokjin (Department of Applied Chemistry and Chemical Engineering, Chungnam National University) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Chemical Engineering, Chungnam National University)
  • 투고 : 2022.08.04
  • 심사 : 2022.08.25
  • 발행 : 2022.10.10

초록

본 연구에서는 석유 정제 부산물인 석유계 잔사유를 이용하여 리튬이차전지용 음극재를 제조하였다. 석유계 잔사유 중 열분해 연료유(pyrolysis fuel oil, PFO), 유동접촉분해 데칸트 오일(fluidized catalyst cracking-decant oil, FCC-DO), 감압잔사유(vacuum residue, VR)를 탄소 전구체로 사용하였다. MALDI-TOF, 원소분석(EA)을 통하여 석유계 잔사유의 물리화학적 특징을 확인하였고, 잔사유로부터 제조된 음극재는 XRD, Raman 등의 분석을 통해 그 구조적 특징을 평가하였다. VR은 PFO 및 FCC-DO에 비하여 광범위한 분자량 분포와 많은 양의 불순물을 함유하는 것을 확인할 수 있었고, PFO와 FCC-DO는 거의 유사한 물리화학적 특징을 나타내었다. XRD 분석결과로부터 탄화된 PFO와 FCC-DO는 유사한 d002값을 나타내었다. 그러나 Lc 및 La값에서는 FCC-DO가 PFO보다 더 발달된 층상구조를 갖는 것으로 확인되었다. 또한, 전기화학적 특성 평가에서는 FCC-DO가 가장 우수한 사이클 특성을 나타내었다. 이러한 석유계 잔사유의 물리화학적, 전기화학적 결과로 미루어 보아 FCC-DO가 PFO와 VR보다 더 우수한 리튬이차전지용 탄소 전구체인 것으로 사료된다.

In this study, an anode material for lithium secondary batteries was manufactured using petroleum-based residual oil, which is a petroleum refining by-product. Among petroleum-based residual oils, pyrolysis fuel oil (PFO), fluidized catalyst cracking-decant oil (FCC-DO), and vacuum residue (VR) were used as carbon precursors. The physicochemical characteristics of petroleum-based residual oil were confirmed through Matrix-assisted laser desorption/ionization Time-of-Flight (MALDI-TOF) and elemental analysis (EA), and the structural characteristics of anode materials manufactured from residual oil were evaluated using X-ray crystallography (XRD) and Raman spectroscopic techniques. VR was found to contain a wide range of molecular weight distributions and large amounts of impurities compared to PFO and FCC-DO, and PFO and FCC-DO exhibited almost similar physicochemical characteristics. From the XRD analysis results, carbonized PFO and FCC-DO showed similar d002 values. However, it was confirmed that FCC-DO had a more developed layered structure than PFO in Lc (Length of a and c axes in the crystal system) and La values. In addition, FCC-DO showed the best cycle characteristics in electrochemical characteristics evaluation. According to the physicochemical and electrochemical results of the petroleum-based residual oil, FCC-DO is a better carbon precursor for a lithium secondary battery than PFO and VR.

키워드

과제정보

본 연구는 산업통상자원부/한국산업기술평가관리원의 탄소산업기반조성사업(바인더 및 코팅용 피치를 활용한 음극재용 실리콘산화물 인조흑연 복합체 개발: 20006777)의 지원에 의하여 수행하였으며 이에 감사드립니다.

참고문헌

  1. M.-S. Park, Y. Ko, M.-J. Jung, and Y.-S. Lee, Stabilization of pitch-based carbon fibers accompanying electron beam irradiation and their mechanical properties, Carbon Lett., 16, 121-126 (2015). https://doi.org/10.5714/CL.2015.16.2.121
  2. J. H. Cho, and B. C. Bai, Effects of pressurized PFO-based pitch coking conditions on coke yield and graphite conductivity, Carbon Lett., 31, 921-927 (2021). https://doi.org/10.1007/s42823-020-00197-z
  3. D. S. Kim, K.H. Kim, C. Lim, and Y.-S. Lee, Carbon-coated SiOx anode materials via PVD and pyrolyzed fuel oil to achieve lithium-ion batteries with high cycling stability, Carbon Lett., 32, 321-328 (2022). https://doi.org/10.1007/s42823-021-00314-6
  4. J. G. Kim, J. H. Kim, B. C. Bai, Y. J. Choi, J. S. Im, T.-S. Bae, and Y.-S. Lee, Influence of kneading ratio on the blending interaction of coke aggregates on manufacturing a carbon block, Carbon Lett., 28, 24-30 (2018). https://doi.org/10.5714/CL.2018.28.024
  5. D. H. An, K. H. Kim, C. H. Lim, and Y.-S. Lee, Effect of kneading and carbonization temperature on the structure of the carbon block for thermally conductive bulk graphites, Carbon Lett., 31, 1357-1364 (2021). https://doi.org/10.1007/s42823-021-00288-5
  6. B. C. Bai, J. G. Kim, J. H. Kim, C. W. Lee, Y.-S. Lee, and J. S. Im, Blending effect of pyrolyzed fuel oil and coal tar in pitch production for artificial graphite, Carbon Lett., 25, 78-83 (2018). https://doi.org/10.5714/CL.2018.25.078
  7. J. G. Kim, F. Liu, C.-W. Lee, Y.-S. Lee, and J. S. Im, Boron-doped carbon prepared from PFO as a lithium-ion battery anode, Solid State Sci., 34, 38-42 (2014). https://doi.org/10.1016/j.solidstatesciences.2014.05.005
  8. J. H. Kim, J. G. Kim, K. B. Lee, and J. S. Im, Effects of pressure-controlled reaction and blending of PFO and FCC-DO for mesophase pitch, Carbon Lett., 29, 203-212 (2019). https://doi.org/10.1007/s42823-019-00022-2
  9. J. G. Kim, J. H. Kim, J. S. Im, Y.-S. Lee, and T.-S. Bae, Empirical study of petroleum-based pitch production via pressureand temperature- controlled thermal reactions, J. Ind. Eng. Chem., 62, 176-184 (2018). https://doi.org/10.1016/j.jiec.2017.12.055
  10. J. G. Kim, J. H. Kim, B.-J. Song, Y. P. Jeon, C. W. Lee, Y.-S. Lee, and J. S. Im, Characterization of pitch derived from pyrolyzed fuel oil using TLC-FID and MALDI-TOF, Fuel, 167, 25-30 (2016). https://doi.org/10.1016/j.fuel.2015.11.050
  11. M. Noel and R. Santhanam, Electrochemistry of graphite intercalation compounds, J. Power Sources, 72, 53-65 (1998). https://doi.org/10.1016/S0378-7753(97)02675-X
  12. J. Shim and K. A. Striebel, Effect of electrode density on cycle performance and irreversible capacity loss for natural graphite anode in lithium-ion batteries, J. Power Sources, 119-121, 934-937 (2003). https://doi.org/10.1016/S0378-7753(03)00235-0
  13. H. Nozaki, K. Nagaoka, K. Hoshi, N. Ohta, and M. Inagaki, Carbon-coated graphite for anode of lithium ion rechargeable batteries: Carbon coating conditions and precursors, J. Power Sources, 194, 486-493 (2009). https://doi.org/10.1016/j.jpowsour.2009.05.040
  14. K. S. Kim, J. U. Hwang, J. S. Im, J. D. Lee, J. H. Kim, and M. I. Kim, The effect of waste PET addition on PFO-based anode materials for improving the electric capacity in lithium-ion battery, Carbon Lett., 30, 545-553 (2020). https://doi.org/10.1007/s42823-020-00124-2
  15. Y. Cheng, C. Fang, J. Su, R. Yu, and T. Li, Carbonization behavior and mesophase conversion kinetics of coal tar pitch using a low temperature molten salt method, J. Anal. Appl. Pyrolysis, 109, 90-97 (2014). https://doi.org/10.1016/j.jaap.2014.07.009
  16. J.-S. Hwang, C.-H. Lee, K.-H. Cho, M.-S. Kim, C.-J. Kim, S.-K. Ryu, and B.-S. Rhee, Preparation of anisotropic/isotropic pitches from NCC-PFO, Korean J. Chem. Eng., 33, 551-558 (1995).
  17. J.-Y. Jung, M.-S. Park, M. I. Kim, and Y.-S. Lee, Novel reforming of pyrolized fuel oil by electron beam radiation for pitch production, Carbon Lett., 15, 262-267 (2014). https://doi.org/10.5714/CL.2014.15.4.262
  18. M.-J. Jung, Y. Ko, and Y.-S. Lee, Synthesis of pitch from PFO, byproduct of naphtha cracking process using UV irradiation and AlCl3 catalyst, Appl. Chem. Eng., 26, 224-228 (2015). https://doi.org/10.14478/ACE.2015.1023
  19. K. H. Kim, S. Lee, D. An, and Y.-S. Lee, Effect of β-resin of petroleum-based binder pitch on density of carbon block, Appl. Chem. Eng., 28, 432-436 (2017). https://doi.org/10.14478/ACE.2017.1035
  20. M.-J. Jung, J.-Y. Jung, D. Lee, and Y.-S. Lee, A new pitch reforming from pyrolysis fuel oil by UV irradiation, J. Ind. Eng. Chem., 22, 70-74 (2015). https://doi.org/10.1016/j.jiec.2014.06.026
  21. J.-Y. Jung and Y.-S. Lee, Preparation of pitch from pyrolized fuel oil by electron beam radiation and its melt-electrospinning property, Carbon Lett., 15, 129-135 (2014). https://doi.org/10.5714/CL.2014.15.2.129
  22. S. W. Seo, J. H. Kim, Y.-S. Lee, and J. S. Im, Identification of synthesized pitch derived from pyrolyzed fuel oil (PFO) by pressure, Appl. Chem. Eng., 29, 652-656 (2018). https://doi.org/10.14478/ACE.2018.1070
  23. J. H. Cho, J. H. Kim, Y.-S. Lee, J. S. Im, and S. C. Kang, Preparation and Characterization of Pitch based Coke with Anisotropic Microstructure Derived from Pyrolysis Fuel Oil, Appl. Chem. Eng., 32, 640-646 (2021).
  24. K. S. Kim, J. S. Im, J. D. Lee, J. H. Kim, and J. U. Hwang, Effects of Pitch Softening Point-based on Soft Carbon Anode for Initial Efficiency and Rate Performance, Appl. Chem. Eng., 30, 331-336 (2019). https://doi.org/10.14478/ACE.2019.1015
  25. J.-H. Kim, S. Lee, E. Jeong, and Y.-S. Lee, Fabrication and Characteristics of Mesophase Pitch-based Graphite Foams Prepared Using PVA-AAc Solution, Appl. Chem. Eng., 26, 706-713 (2015). https://doi.org/10.14478/ACE.2015.1102
  26. F. Tuinstra and J. L. Koenig, Raman spectrum of graphite, J. Chem. Phys., 53, 1126-1130 (1970). https://doi.org/10.1063/1.1674108
  27. S. Reich and C. Thomsen, Raman spectroscopy of graphite, Philos. Trans. Royal Soc. A, 362, 2271-2288 (2004). https://doi.org/10.1098/rsta.2004.1454
  28. J. U. Hwang and J. D. Lee, Electrochemical characteristics of PFO pitch anode prepared by chemical activation for lithium ion battery, Korean Chem. Eng. Res., 55, 307-312 (2017).
  29. H. Y. Lee, and J. D. Lee, Electrochemical Performance on the H3BO3 Treated Soft Carbon modified from PFO as Anode Material, Korean Chem. Eng. Res., 54, 746-752 (2016). https://doi.org/10.9713/kcer.2016.54.6.746
  30. Jafaria, S. M., Khosravia, M. and Mollazadehb, M., Nanoporous Hard Carbon Microspheres as Anode Active Material of Lithium Ion Battery, Electrochim. Acta, 203, 9-20 (2016). https://doi.org/10.1016/j.electacta.2016.03.028
  31. S. Alvin, H. S. Cahyadi, J. Hwang, W. Chang, S. K. Kwak, and J. Kim, Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon, Adv. Energy Mater., 10, 2000283 (2020). https://doi.org/10.1002/aenm.202000283
  32. N. A. Kaskhedikar and J. Maier, Lithium storage in carbon nanostructures, Adv. Mater., 21, 2664-2680 (2009). https://doi.org/10.1002/adma.200901079